/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- GetImageBoundingBox
- GetImageDepth
- GetImageChannelDepth
- MagickMin
- GetImageQuantumDepth
- GetImageType
- IsGrayImage
- IsMonochromeImage
- IsOpaqueImage
- SetImageDepth
- SetImageChannelDepth
- SetImageType
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% AAA TTTTT TTTTT RRRR IIIII BBBB U U TTTTT EEEEE %
% A A T T R R I B B U U T E %
% AAAAA T T RRRR I BBBB U U T EEE %
% A A T T R R I B B U U T E %
% A A T T R R IIIII BBBB UUU T EEEEE %
% %
% %
% MagickCore Get / Set Image Attributes %
% %
% Software Design %
% John Cristy %
% October 2002 %
% %
% %
% Copyright 1999-2013 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/artifact.h"
#include "magick/attribute.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/cache.h"
#include "magick/cache-private.h"
#include "magick/cache-view.h"
#include "magick/client.h"
#include "magick/channel.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colormap.h"
#include "magick/colormap-private.h"
#include "magick/colorspace.h"
#include "magick/colorspace-private.h"
#include "magick/composite.h"
#include "magick/composite-private.h"
#include "magick/constitute.h"
#include "magick/deprecate.h"
#include "magick/draw.h"
#include "magick/draw-private.h"
#include "magick/effect.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/geometry.h"
#include "magick/histogram.h"
#include "magick/identify.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/log.h"
#include "magick/memory_.h"
#include "magick/magick.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/option.h"
#include "magick/paint.h"
#include "magick/pixel.h"
#include "magick/pixel-private.h"
#include "magick/property.h"
#include "magick/quantize.h"
#include "magick/random_.h"
#include "magick/resource_.h"
#include "magick/semaphore.h"
#include "magick/segment.h"
#include "magick/splay-tree.h"
#include "magick/string_.h"
#include "magick/thread-private.h"
#include "magick/threshold.h"
#include "magick/transform.h"
#include "magick/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t I m a g e B o u n d i n g B o x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageBoundingBox() returns the bounding box of an image canvas.
%
% The format of the GetImageBoundingBox method is:
%
% RectangleInfo GetImageBoundingBox(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o bounds: Method GetImageBoundingBox returns the bounding box of an
% image canvas.
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport RectangleInfo GetImageBoundingBox(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
MagickPixelPacket
target[3],
zero;
RectangleInfo
bounds;
register const PixelPacket
*p;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
bounds.width=0;
bounds.height=0;
bounds.x=(ssize_t) image->columns;
bounds.y=(ssize_t) image->rows;
GetMagickPixelPacket(image,&target[0]);
image_view=AcquireVirtualCacheView(image,exception);
p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception);
if (p == (const PixelPacket *) NULL)
{
image_view=DestroyCacheView(image_view);
return(bounds);
}
SetMagickPixelPacket(image,p,GetCacheViewVirtualIndexQueue(image_view),
&target[0]);
GetMagickPixelPacket(image,&target[1]);
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1,
exception);
SetMagickPixelPacket(image,p,GetCacheViewVirtualIndexQueue(image_view),
&target[1]);
GetMagickPixelPacket(image,&target[2]);
p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1,
exception);
SetMagickPixelPacket(image,p,GetCacheViewVirtualIndexQueue(image_view),
&target[2]);
status=MagickTrue;
GetMagickPixelPacket(image,&zero);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickPixelPacket
pixel;
RectangleInfo
bounding_box;
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
# pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
bounding_box=bounds;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
pixel=zero;
for (x=0; x < (ssize_t) image->columns; x++)
{
SetMagickPixelPacket(image,p,indexes+x,&pixel);
if ((x < bounding_box.x) &&
(IsMagickColorSimilar(&pixel,&target[0]) == MagickFalse))
bounding_box.x=x;
if ((x > (ssize_t) bounding_box.width) &&
(IsMagickColorSimilar(&pixel,&target[1]) == MagickFalse))
bounding_box.width=(size_t) x;
if ((y < bounding_box.y) &&
(IsMagickColorSimilar(&pixel,&target[0]) == MagickFalse))
bounding_box.y=y;
if ((y > (ssize_t) bounding_box.height) &&
(IsMagickColorSimilar(&pixel,&target[2]) == MagickFalse))
bounding_box.height=(size_t) y;
p++;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
# pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
{
if (bounding_box.x < bounds.x)
bounds.x=bounding_box.x;
if (bounding_box.y < bounds.y)
bounds.y=bounding_box.y;
if (bounding_box.width > bounds.width)
bounds.width=bounding_box.width;
if (bounding_box.height > bounds.height)
bounds.height=bounding_box.height;
}
}
image_view=DestroyCacheView(image_view);
if ((bounds.width == 0) || (bounds.height == 0))
(void) ThrowMagickException(exception,GetMagickModule(),OptionWarning,
"GeometryDoesNotContainImage","`%s'",image->filename);
else
{
bounds.width-=(bounds.x-1);
bounds.height-=(bounds.y-1);
}
return(bounds);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageChannelDepth() returns the depth of a particular image channel.
%
% The format of the GetImageChannelDepth method is:
%
% size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
% size_t GetImageChannelDepth(const Image *image,
% const ChannelType channel,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
{
return(GetImageChannelDepth(image,CompositeChannels,exception));
}
MagickExport size_t GetImageChannelDepth(const Image *image,
const ChannelType channel,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
register ssize_t
id;
size_t
*current_depth,
depth,
number_threads;
ssize_t
y;
/*
Compute image depth.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
current_depth=(size_t *) AcquireQuantumMemory(number_threads,
sizeof(*current_depth));
if (current_depth == (size_t *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
status=MagickTrue;
for (id=0; id < (ssize_t) number_threads; id++)
current_depth[id]=1;
if ((image->storage_class == PseudoClass) && (image->matte == MagickFalse))
{
register ssize_t
i;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,1,1)
#endif
for (i=0; i < (ssize_t) image->colors; i++)
{
const int
id = GetOpenMPThreadId();
if (status == MagickFalse)
continue;
while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
{
MagickStatusType
status;
QuantumAny
range;
status=0;
range=GetQuantumRange(current_depth[id]);
if ((channel & RedChannel) != 0)
status|=image->colormap[i].red != ScaleAnyToQuantum(
ScaleQuantumToAny(image->colormap[i].red,range),range);
if ((channel & GreenChannel) != 0)
status|=image->colormap[i].green != ScaleAnyToQuantum(
ScaleQuantumToAny(image->colormap[i].green,range),range);
if ((channel & BlueChannel) != 0)
status|=image->colormap[i].blue != ScaleAnyToQuantum(
ScaleQuantumToAny(image->colormap[i].blue,range),range);
if (status == 0)
break;
current_depth[id]++;
}
}
depth=current_depth[0];
for (id=1; id < (ssize_t) number_threads; id++)
if (depth < current_depth[id])
depth=current_depth[id];
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
image_view=AcquireVirtualCacheView(image,exception);
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if (QuantumRange <= MaxMap)
{
register ssize_t
i;
size_t
*depth_map;
/*
Scale pixels to desired (optimized with depth map).
*/
depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map));
if (depth_map == (size_t *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) MaxMap; i++)
{
unsigned int
depth;
for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++)
{
Quantum
pixel;
QuantumAny
range;
range=GetQuantumRange(depth);
pixel=(Quantum) i;
if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range))
break;
}
depth_map[i]=depth;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
continue;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
Quantum
pixel;
if ((channel & RedChannel) != 0)
{
pixel=GetPixelRed(p);
if (depth_map[ScaleQuantumToMap(pixel)] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(pixel)];
}
if ((channel & GreenChannel) != 0)
{
pixel=GetPixelGreen(p);
if (depth_map[ScaleQuantumToMap(pixel)] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(pixel)];
}
if ((channel & BlueChannel) != 0)
{
pixel=GetPixelBlue(p);
if (depth_map[ScaleQuantumToMap(pixel)] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(pixel)];
}
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
{
pixel=GetPixelOpacity(p);
if (depth_map[ScaleQuantumToMap(pixel)] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(pixel)];
}
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
{
pixel=GetPixelIndex(indexes+x);
if (depth_map[ScaleQuantumToMap(pixel)] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(pixel)];
}
p++;
}
if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
depth=current_depth[0];
for (id=1; id < (ssize_t) number_threads; id++)
if (depth < current_depth[id])
depth=current_depth[id];
depth_map=(size_t *) RelinquishMagickMemory(depth_map);
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
#endif
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
continue;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
{
MagickStatusType
status;
QuantumAny
range;
status=0;
range=GetQuantumRange(current_depth[id]);
if ((channel & RedChannel) != 0)
status|=GetPixelRed(p) != ScaleAnyToQuantum(
ScaleQuantumToAny(GetPixelRed(p),range),range);
if ((channel & GreenChannel) != 0)
status|=GetPixelGreen(p) != ScaleAnyToQuantum(
ScaleQuantumToAny(GetPixelGreen(p),range),range);
if ((channel & BlueChannel) != 0)
status|=GetPixelBlue(p) != ScaleAnyToQuantum(
ScaleQuantumToAny(GetPixelBlue(p),range),range);
if (((channel & OpacityChannel) != 0) && (image->matte != MagickFalse))
status|=GetPixelOpacity(p) != ScaleAnyToQuantum(
ScaleQuantumToAny(GetPixelOpacity(p),range),range);
if (((channel & IndexChannel) != 0) &&
(image->colorspace == CMYKColorspace))
status|=GetPixelIndex(indexes+x) != ScaleAnyToQuantum(
ScaleQuantumToAny(GetPixelIndex(indexes+x),range),range);
if (status == 0)
break;
current_depth[id]++;
}
p++;
}
if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
depth=current_depth[0];
for (id=1; id < (ssize_t) number_threads; id++)
if (depth < current_depth[id])
depth=current_depth[id];
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e Q u a n t u m D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageQuantumDepth() returns the depth of the image rounded to a legal
% quantum depth: 8, 16, or 32.
%
% The format of the GetImageQuantumDepth method is:
%
% size_t GetImageQuantumDepth(const Image *image,
% const MagickBooleanType constrain)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o constrain: A value other than MagickFalse, constrains the depth to
% a maximum of MAGICKCORE_QUANTUM_DEPTH.
%
*/
static inline double MagickMin(const double x,const double y)
{
if (x < y)
return(x);
return(y);
}
MagickExport size_t GetImageQuantumDepth(const Image *image,
const MagickBooleanType constrain)
{
size_t
depth;
depth=image->depth;
if (depth <= 8)
depth=8;
else
if (depth <= 16)
depth=16;
else
if (depth <= 32)
depth=32;
else
if (depth <= 64)
depth=64;
if (constrain != MagickFalse)
depth=(size_t) MagickMin((double) depth,(double)
MAGICKCORE_QUANTUM_DEPTH);
return(depth);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageType() returns the potential type of image:
%
% Bilevel Grayscale GrayscaleMatte
% Palette PaletteMatte TrueColor
% TrueColorMatte ColorSeparation ColorSeparationMatte
%
% To ensure the image type matches its potential, use SetImageType():
%
% (void) SetImageType(image,GetImageType(image));
%
% The format of the GetImageType method is:
%
% ImageType GetImageType(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ImageType GetImageType(const Image *image,ExceptionInfo *exception)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->colorspace == CMYKColorspace)
{
if (image->matte == MagickFalse)
return(ColorSeparationType);
return(ColorSeparationMatteType);
}
if (IsMonochromeImage(image,exception) != MagickFalse)
return(BilevelType);
if (IsGrayImage(image,exception) != MagickFalse)
{
if (image->matte != MagickFalse)
return(GrayscaleMatteType);
return(GrayscaleType);
}
if (IsPaletteImage(image,exception) != MagickFalse)
{
if (image->matte != MagickFalse)
return(PaletteMatteType);
return(PaletteType);
}
if (image->matte != MagickFalse)
return(TrueColorMatteType);
return(TrueColorType);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s G r a y I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsGrayImage() returns MagickTrue if all the pixels in the image have the
% same red, green, and blue intensities.
%
% The format of the IsGrayImage method is:
%
% MagickBooleanType IsGrayImage(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsGrayImage(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
ImageType
type;
register const PixelPacket
*p;
register ssize_t
x;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if ((image->type == BilevelType) || (image->type == GrayscaleType) ||
(image->type == GrayscaleMatteType))
return(MagickTrue);
if ((IsGrayColorspace(image->colorspace) == MagickFalse) &&
(IssRGBCompatibleColorspace(image->colorspace) == MagickFalse))
return(MagickFalse);
type=BilevelType;
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsGrayPixel(p) == MagickFalse)
{
type=UndefinedType;
break;
}
if ((type == BilevelType) && (IsMonochromePixel(p) == MagickFalse))
type=GrayscaleType;
p++;
}
if (type == UndefinedType)
break;
}
image_view=DestroyCacheView(image_view);
if (type == UndefinedType)
return(MagickFalse);
((Image *) image)->colorspace=GRAYColorspace;
((Image *) image)->type=type;
if ((type == GrayscaleType) && (image->matte != MagickFalse))
((Image *) image)->type=GrayscaleMatteType;
return(SyncImagePixelCache((Image *) image,exception));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s M o n o c h r o m e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsMonochromeImage() returns MagickTrue if all the pixels in the image have
% the same red, green, and blue intensities and the intensity is either
% 0 or QuantumRange.
%
% The format of the IsMonochromeImage method is:
%
% MagickBooleanType IsMonochromeImage(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsMonochromeImage(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
ImageType
type;
register ssize_t
x;
register const PixelPacket
*p;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->type == BilevelType)
return(MagickTrue);
if ((IsGrayColorspace(image->colorspace) == MagickFalse) &&
(IssRGBCompatibleColorspace(image->colorspace) == MagickFalse))
return(MagickFalse);
type=BilevelType;
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsMonochromePixel(p) == MagickFalse)
{
type=UndefinedType;
break;
}
p++;
}
if (type == UndefinedType)
break;
}
image_view=DestroyCacheView(image_view);
if (type == UndefinedType)
return(MagickFalse);
((Image *) image)->colorspace=GRAYColorspace;
((Image *) image)->type=type;
return(SyncImagePixelCache((Image *) image,exception));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s O p a q u e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsOpaqueImage() returns MagickTrue if none of the pixels in the image have
% an opacity value other than opaque (0).
%
% The format of the IsOpaqueImage method is:
%
% MagickBooleanType IsOpaqueImage(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsOpaqueImage(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
register const PixelPacket
*p;
register ssize_t
x;
ssize_t
y;
/*
Determine if image is opaque.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->matte == MagickFalse)
return(MagickTrue);
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (GetPixelOpacity(p) != OpaqueOpacity)
break;
p++;
}
if (x < (ssize_t) image->columns)
break;
}
image_view=DestroyCacheView(image_view);
return(y < (ssize_t) image->rows ? MagickFalse : MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t I m a g e C h a n n e l D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetImageChannelDepth() sets the depth of the image.
%
% The format of the SetImageChannelDepth method is:
%
% MagickBooleanType SetImageDepth(Image *image,const size_t depth)
% MagickBooleanType SetImageChannelDepth(Image *image,
% const ChannelType channel,const size_t depth)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o depth: the image depth.
%
*/
MagickExport MagickBooleanType SetImageDepth(Image *image,
const size_t depth)
{
return(SetImageChannelDepth(image,CompositeChannels,depth));
}
MagickExport MagickBooleanType SetImageChannelDepth(Image *image,
const ChannelType channel,const size_t depth)
{
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
QuantumAny
range;
ssize_t
y;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickSignature);
if (depth >= MAGICKCORE_QUANTUM_DEPTH)
{
image->depth=depth;
return(MagickTrue);
}
range=GetQuantumRange(depth);
if (image->storage_class == PseudoClass)
{
register ssize_t
i;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,1,1)
#endif
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((channel & RedChannel) != 0)
image->colormap[i].red=ScaleAnyToQuantum(ScaleQuantumToAny(
image->colormap[i].red,range),range);
if ((channel & GreenChannel) != 0)
image->colormap[i].green=ScaleAnyToQuantum(ScaleQuantumToAny(
image->colormap[i].green,range),range);
if ((channel & BlueChannel) != 0)
image->colormap[i].blue=ScaleAnyToQuantum(ScaleQuantumToAny(
image->colormap[i].blue,range),range);
if ((channel & OpacityChannel) != 0)
image->colormap[i].opacity=ScaleAnyToQuantum(ScaleQuantumToAny(
image->colormap[i].opacity,range),range);
}
}
status=MagickTrue;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if (QuantumRange <= MaxMap)
{
Quantum
*depth_map;
register ssize_t
i;
/*
Scale pixels to desired (optimized with depth map).
*/
depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map));
if (depth_map == (Quantum *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) MaxMap; i++)
depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range),
range);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,depth_map[ScaleQuantumToMap(GetPixelRed(q))]);
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,depth_map[ScaleQuantumToMap(GetPixelGreen(q))]);
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,depth_map[ScaleQuantumToMap(GetPixelBlue(q))]);
if (((channel & OpacityChannel) != 0) &&
(image->matte != MagickFalse))
SetPixelOpacity(q,depth_map[ScaleQuantumToMap(GetPixelOpacity(q))]);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
{
status=MagickFalse;
continue;
}
}
image_view=DestroyCacheView(image_view);
depth_map=(Quantum *) RelinquishMagickMemory(depth_map);
if (status != MagickFalse)
image->depth=depth;
return(status);
}
#endif
/*
Scale pixels to desired depth.
*/
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
if ((channel & RedChannel) != 0)
SetPixelRed(q,ScaleAnyToQuantum(ScaleQuantumToAny(GetPixelRed(q),
range),range));
if ((channel & GreenChannel) != 0)
SetPixelGreen(q,ScaleAnyToQuantum(ScaleQuantumToAny(GetPixelGreen(q),
range),range));
if ((channel & BlueChannel) != 0)
SetPixelBlue(q,ScaleAnyToQuantum(ScaleQuantumToAny(GetPixelBlue(q),
range),range));
if (((channel & OpacityChannel) != 0) && (image->matte != MagickFalse))
SetPixelOpacity(q,ScaleAnyToQuantum(ScaleQuantumToAny(
GetPixelOpacity(q),range),range));
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
{
status=MagickFalse;
continue;
}
}
image_view=DestroyCacheView(image_view);
if (status != MagickFalse)
image->depth=depth;
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t I m a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetImageType() sets the type of image. Choose from these types:
%
% BilevelType, GrayscaleType, GrayscaleMatteType, PaletteType,
% PaletteMatteType, TrueColorType, TrueColorMatteType,
% ColorSeparationType, ColorSeparationMatteType, OptimizeType
%
% The format of the SetImageType method is:
%
% MagickBooleanType SetImageType(Image *image,const ImageType type)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o type: Image type.
%
*/
MagickExport MagickBooleanType SetImageType(Image *image,const ImageType type)
{
const char
*artifact;
ImageInfo
*image_info;
MagickBooleanType
status;
QuantizeInfo
*quantize_info;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickSignature);
status=MagickTrue;
image_info=AcquireImageInfo();
image_info->dither=image->dither;
artifact=GetImageArtifact(image,"dither");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"dither",artifact);
switch (type)
{
case BilevelType:
{
if (IsGrayImage(image,&image->exception) == MagickFalse)
status=TransformImageColorspace(image,GRAYColorspace);
if (IsMonochromeImage(image,&image->exception) == MagickFalse)
{
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->number_colors=2;
quantize_info->colorspace=GRAYColorspace;
status=QuantizeImage(quantize_info,image);
quantize_info=DestroyQuantizeInfo(quantize_info);
}
image->matte=MagickFalse;
break;
}
case GrayscaleType:
{
if (IsGrayImage(image,&image->exception) == MagickFalse)
status=TransformImageColorspace(image,GRAYColorspace);
image->matte=MagickFalse;
break;
}
case GrayscaleMatteType:
{
if (IsGrayImage(image,&image->exception) == MagickFalse)
status=TransformImageColorspace(image,GRAYColorspace);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
break;
}
case PaletteType:
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
if ((image->storage_class == DirectClass) || (image->colors > 256))
{
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->number_colors=256;
status=QuantizeImage(quantize_info,image);
quantize_info=DestroyQuantizeInfo(quantize_info);
}
image->matte=MagickFalse;
break;
}
case PaletteBilevelMatteType:
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
(void) BilevelImageChannel(image,AlphaChannel,(double) QuantumRange/2.0);
quantize_info=AcquireQuantizeInfo(image_info);
status=QuantizeImage(quantize_info,image);
quantize_info=DestroyQuantizeInfo(quantize_info);
break;
}
case PaletteMatteType:
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->colorspace=TransparentColorspace;
status=QuantizeImage(quantize_info,image);
quantize_info=DestroyQuantizeInfo(quantize_info);
break;
}
case TrueColorType:
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass);
image->matte=MagickFalse;
break;
}
case TrueColorMatteType:
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
break;
}
case ColorSeparationType:
{
if (image->colorspace != CMYKColorspace)
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
status=TransformImageColorspace(image,CMYKColorspace);
}
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass);
image->matte=MagickFalse;
break;
}
case ColorSeparationMatteType:
{
if (image->colorspace != CMYKColorspace)
{
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
status=TransformImageColorspace(image,sRGBColorspace);
status=TransformImageColorspace(image,CMYKColorspace);
}
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass);
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
break;
}
case OptimizeType:
case UndefinedType:
break;
}
image->type=type;
image_info=DestroyImageInfo(image_info);
return(status);
}