root/third_party/tcmalloc/chromium/src/windows/preamble_patcher.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ResolveTargetImpl
  2. Release
  3. RawPatchWithStubAndProtections
  4. RawPatch
  5. Unpatch
  6. Initialize
  7. AllocPreambleBlockNear
  8. FreePreambleBlock
  9. AllocPageNear
  10. IsShortConditionalJump
  11. IsNearConditionalJump
  12. IsNearRelativeJump
  13. IsNearAbsoluteCall
  14. IsNearRelativeCall
  15. IsMovWithDisplacement
  16. PatchShortConditionalJump
  17. PatchNearJumpOrCall
  18. PatchMovWithDisplacement

/* Copyright (c) 2007, Google Inc.
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ---
 * Author: Joi Sigurdsson
 * Author: Scott Francis
 *
 * Implementation of PreamblePatcher
 */

#include "preamble_patcher.h"

#include "mini_disassembler.h"

// compatibility shims
#include "base/logging.h"

// Definitions of assembly statements we need
#define ASM_JMP32REL 0xE9
#define ASM_INT3 0xCC
#define ASM_JMP32ABS_0 0xFF
#define ASM_JMP32ABS_1 0x25
#define ASM_JMP8REL 0xEB
#define ASM_JCC32REL_0 0x0F
#define ASM_JCC32REL_1_MASK 0x80
#define ASM_NOP 0x90
// X64 opcodes
#define ASM_REXW 0x48
#define ASM_MOVRAX_IMM 0xB8
#define ASM_JMP 0xFF
#define ASM_JMP_RAX 0xE0

namespace sidestep {

PreamblePatcher::PreamblePage* PreamblePatcher::preamble_pages_ = NULL;
long PreamblePatcher::granularity_ = 0;
long PreamblePatcher::pagesize_ = 0;
bool PreamblePatcher::initialized_ = false;

static const unsigned int kPreamblePageMagic = 0x4347414D; // "MAGC"

// Handle a special case that we see with functions that point into an
// IAT table (including functions linked statically into the
// application): these function already starts with ASM_JMP32*.  For
// instance, malloc() might be implemented as a JMP to __malloc().
// This function follows the initial JMPs for us, until we get to the
// place where the actual code is defined.  If we get to STOP_BEFORE,
// we return the address before stop_before.  The stop_before_trampoline
// flag is used in 64-bit mode.  If true, we will return the address
// before a trampoline is detected.  Trampolines are defined as:
//
//    nop
//    mov rax, <replacement_function>
//    jmp rax
//
// See PreamblePatcher::RawPatchWithStub for more information.
void* PreamblePatcher::ResolveTargetImpl(unsigned char* target,
                                         unsigned char* stop_before,
                                         bool stop_before_trampoline) {
  if (target == NULL)
    return NULL;
  while (1) {
    unsigned char* new_target;
    if (target[0] == ASM_JMP32REL) {
      // target[1-4] holds the place the jmp goes to, but it's
      // relative to the next instruction.
      int relative_offset;   // Windows guarantees int is 4 bytes
      SIDESTEP_ASSERT(sizeof(relative_offset) == 4);
      memcpy(reinterpret_cast<void*>(&relative_offset),
             reinterpret_cast<void*>(target + 1), 4);
      new_target = target + 5 + relative_offset;
    } else if (target[0] == ASM_JMP8REL) {
      // Visual Studio 7.1 implements new[] as an 8 bit jump to new
      signed char relative_offset;
      memcpy(reinterpret_cast<void*>(&relative_offset),
             reinterpret_cast<void*>(target + 1), 1);
      new_target = target + 2 + relative_offset;
    } else if (target[0] == ASM_JMP32ABS_0 &&
               target[1] == ASM_JMP32ABS_1) {
      // Visual studio seems to sometimes do it this way instead of the
      // previous way.  Not sure what the rules are, but it was happening
      // with operator new in some binaries.
      void** new_target_v;
      if (kIs64BitBinary) {
        // In 64-bit mode JMPs are RIP-relative, not absolute
        int target_offset;
        memcpy(reinterpret_cast<void*>(&target_offset),
               reinterpret_cast<void*>(target + 2), 4);
        new_target_v = reinterpret_cast<void**>(target + target_offset + 6);
      } else {
        SIDESTEP_ASSERT(sizeof(new_target) == 4);
        memcpy(&new_target_v, reinterpret_cast<void*>(target + 2), 4);
      }
      new_target = reinterpret_cast<unsigned char*>(*new_target_v);
    } else {
      break;
    }
    if (new_target == stop_before)
      break;
    if (stop_before_trampoline && *new_target == ASM_NOP
        && new_target[1] == ASM_REXW && new_target[2] == ASM_MOVRAX_IMM)
      break;
    target = new_target;
  }
  return target;
}

// Special case scoped_ptr to avoid dependency on scoped_ptr below.
class DeleteUnsignedCharArray {
 public:
  DeleteUnsignedCharArray(unsigned char* array) : array_(array) {
  }

  ~DeleteUnsignedCharArray() {
    if (array_) {
      PreamblePatcher::FreePreambleBlock(array_);
    }
  }

  unsigned char* Release() {
    unsigned char* temp = array_;
    array_ = NULL;
    return temp;
  }

 private:
  unsigned char* array_;
};

SideStepError PreamblePatcher::RawPatchWithStubAndProtections(
    void* target_function, void *replacement_function,
    unsigned char* preamble_stub, unsigned long stub_size,
    unsigned long* bytes_needed) {
  // We need to be able to write to a process-local copy of the first
  // MAX_PREAMBLE_STUB_SIZE bytes of target_function
  DWORD old_target_function_protect = 0;
  BOOL succeeded = ::VirtualProtect(reinterpret_cast<void*>(target_function),
                                    MAX_PREAMBLE_STUB_SIZE,
                                    PAGE_EXECUTE_READWRITE,
                                    &old_target_function_protect);
  if (!succeeded) {
    SIDESTEP_ASSERT(false && "Failed to make page containing target function "
                    "copy-on-write.");
    return SIDESTEP_ACCESS_DENIED;
  }

  SideStepError error_code = RawPatchWithStub(target_function,
                                              replacement_function,
                                              preamble_stub,
                                              stub_size,
                                              bytes_needed);

  // Restore the protection of the first MAX_PREAMBLE_STUB_SIZE bytes of
  // pTargetFunction to what they were before we started goofing around.
  // We do this regardless of whether the patch succeeded or not.
  succeeded = ::VirtualProtect(reinterpret_cast<void*>(target_function),
                               MAX_PREAMBLE_STUB_SIZE,
                               old_target_function_protect,
                               &old_target_function_protect);
  if (!succeeded) {
    SIDESTEP_ASSERT(false &&
                    "Failed to restore protection to target function.");
    // We must not return an error here because the function has
    // likely actually been patched, and returning an error might
    // cause our client code not to unpatch it.  So we just keep
    // going.
  }

  if (SIDESTEP_SUCCESS != error_code) {  // Testing RawPatchWithStub, above
    SIDESTEP_ASSERT(false);
    return error_code;
  }

  // Flush the instruction cache to make sure the processor doesn't execute the
  // old version of the instructions (before our patch).
  //
  // FlushInstructionCache is actually a no-op at least on
  // single-processor XP machines.  I'm not sure why this is so, but
  // it is, yet I want to keep the call to the API here for
  // correctness in case there is a difference in some variants of
  // Windows/hardware.
  succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
                                      target_function,
                                      MAX_PREAMBLE_STUB_SIZE);
  if (!succeeded) {
    SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
    // We must not return an error here because the function has actually
    // been patched, and returning an error would likely cause our client
    // code not to unpatch it.  So we just keep going.
  }

  return SIDESTEP_SUCCESS;
}

SideStepError PreamblePatcher::RawPatch(void* target_function,
                                        void* replacement_function,
                                        void** original_function_stub) {
  if (!target_function || !replacement_function || !original_function_stub ||
      (*original_function_stub) || target_function == replacement_function) {
    SIDESTEP_ASSERT(false && "Preconditions not met");
    return SIDESTEP_INVALID_PARAMETER;
  }

  BOOL succeeded = FALSE;

  // First, deal with a special case that we see with functions that
  // point into an IAT table (including functions linked statically
  // into the application): these function already starts with
  // ASM_JMP32REL.  For instance, malloc() might be implemented as a
  // JMP to __malloc().  In that case, we replace the destination of
  // the JMP (__malloc), rather than the JMP itself (malloc).  This
  // way we get the correct behavior no matter how malloc gets called.
  void* new_target = ResolveTarget(target_function);
  if (new_target != target_function) {
    target_function = new_target;
  }

  // In 64-bit mode, preamble_stub must be within 2GB of target function
  // so that if target contains a jump, we can translate it.
  unsigned char* preamble_stub = AllocPreambleBlockNear(target_function);
  if (!preamble_stub) {
    SIDESTEP_ASSERT(false && "Unable to allocate preamble-stub.");
    return SIDESTEP_INSUFFICIENT_BUFFER;
  }

  // Frees the array at end of scope.
  DeleteUnsignedCharArray guard_preamble_stub(preamble_stub);

  SideStepError error_code = RawPatchWithStubAndProtections(
      target_function, replacement_function, preamble_stub,
      MAX_PREAMBLE_STUB_SIZE, NULL);

  if (SIDESTEP_SUCCESS != error_code) {
    SIDESTEP_ASSERT(false);
    return error_code;
  }

  // Flush the instruction cache to make sure the processor doesn't execute the
  // old version of the instructions (before our patch).
  //
  // FlushInstructionCache is actually a no-op at least on
  // single-processor XP machines.  I'm not sure why this is so, but
  // it is, yet I want to keep the call to the API here for
  // correctness in case there is a difference in some variants of
  // Windows/hardware.
  succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
                                      target_function,
                                      MAX_PREAMBLE_STUB_SIZE);
  if (!succeeded) {
    SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
    // We must not return an error here because the function has actually
    // been patched, and returning an error would likely cause our client
    // code not to unpatch it.  So we just keep going.
  }

  SIDESTEP_LOG("PreamblePatcher::RawPatch successfully patched.");

  // detach the scoped pointer so the memory is not freed
  *original_function_stub =
      reinterpret_cast<void*>(guard_preamble_stub.Release());
  return SIDESTEP_SUCCESS;
}

SideStepError PreamblePatcher::Unpatch(void* target_function,
                                       void* replacement_function,
                                       void* original_function_stub) {
  SIDESTEP_ASSERT(target_function && replacement_function &&
                  original_function_stub);
  if (!target_function || !replacement_function ||
      !original_function_stub) {
    return SIDESTEP_INVALID_PARAMETER;
  }

  // Before unpatching, target_function should be a JMP to
  // replacement_function.  If it's not, then either it's an error, or
  // we're falling into the case where the original instruction was a
  // JMP, and we patched the jumped_to address rather than the JMP
  // itself.  (For instance, if malloc() is just a JMP to __malloc(),
  // we patched __malloc() and not malloc().)
  unsigned char* target = reinterpret_cast<unsigned char*>(target_function);
  target = reinterpret_cast<unsigned char*>(
      ResolveTargetImpl(
          target, reinterpret_cast<unsigned char*>(replacement_function),
          true));
  // We should end at the function we patched.  When we patch, we insert
  // a ASM_JMP32REL instruction, so look for that as a sanity check.
  if (target[0] != ASM_JMP32REL) {
    SIDESTEP_ASSERT(false &&
                    "target_function does not look like it was patched.");
    return SIDESTEP_INVALID_PARAMETER;
  }

  const unsigned int kRequiredTargetPatchBytes = 5;

  // We need to be able to write to a process-local copy of the first
  // kRequiredTargetPatchBytes bytes of target_function
  DWORD old_target_function_protect = 0;
  BOOL succeeded = ::VirtualProtect(reinterpret_cast<void*>(target),
                                    kRequiredTargetPatchBytes,
                                    PAGE_EXECUTE_READWRITE,
                                    &old_target_function_protect);
  if (!succeeded) {
    SIDESTEP_ASSERT(false && "Failed to make page containing target function "
                    "copy-on-write.");
    return SIDESTEP_ACCESS_DENIED;
  }

  unsigned char* preamble_stub = reinterpret_cast<unsigned char*>(
                                   original_function_stub);

  // Disassemble the preamble of stub and copy the bytes back to target.
  // If we've done any conditional jumps in the preamble we need to convert
  // them back to the orignal REL8 jumps in the target.
  MiniDisassembler disassembler;
  unsigned int preamble_bytes = 0;
  unsigned int target_bytes = 0;
  while (target_bytes < kRequiredTargetPatchBytes) {
    unsigned int cur_bytes = 0;
    InstructionType instruction_type =
        disassembler.Disassemble(preamble_stub + preamble_bytes, cur_bytes);
    if (IT_JUMP == instruction_type) {
      unsigned int jump_bytes = 0;
      SideStepError jump_ret = SIDESTEP_JUMP_INSTRUCTION;
      if (IsNearConditionalJump(preamble_stub + preamble_bytes, cur_bytes) ||
          IsNearRelativeJump(preamble_stub + preamble_bytes, cur_bytes) ||
          IsNearAbsoluteCall(preamble_stub + preamble_bytes, cur_bytes) ||
          IsNearRelativeCall(preamble_stub + preamble_bytes, cur_bytes)) {
        jump_ret = PatchNearJumpOrCall(preamble_stub + preamble_bytes, 
                                       cur_bytes, target + target_bytes, 
                                       &jump_bytes, MAX_PREAMBLE_STUB_SIZE);
      }
      if (jump_ret == SIDESTEP_JUMP_INSTRUCTION) {
        SIDESTEP_ASSERT(false &&
                        "Found unsupported jump instruction in stub!!");
        return SIDESTEP_UNSUPPORTED_INSTRUCTION;
      }
      target_bytes += jump_bytes;
    } else if (IT_GENERIC == instruction_type) {
      if (IsMovWithDisplacement(preamble_stub + preamble_bytes, cur_bytes)) {
        unsigned int mov_bytes = 0;
        if (PatchMovWithDisplacement(preamble_stub + preamble_bytes, cur_bytes,
                                     target + target_bytes, &mov_bytes,
                                     MAX_PREAMBLE_STUB_SIZE)
                                     != SIDESTEP_SUCCESS) {
          SIDESTEP_ASSERT(false &&
                          "Found unsupported generic instruction in stub!!");
          return SIDESTEP_UNSUPPORTED_INSTRUCTION;
        }
      } else {
        memcpy(reinterpret_cast<void*>(target + target_bytes),
               reinterpret_cast<void*>(reinterpret_cast<unsigned char*>(
                   original_function_stub) + preamble_bytes), cur_bytes);
        target_bytes += cur_bytes;
      }
    } else {
      SIDESTEP_ASSERT(false &&
                      "Found unsupported instruction in stub!!");
      return SIDESTEP_UNSUPPORTED_INSTRUCTION;
    }
    preamble_bytes += cur_bytes;
  }

  FreePreambleBlock(reinterpret_cast<unsigned char*>(original_function_stub));

  // Restore the protection of the first kRequiredTargetPatchBytes bytes of
  // target to what they were before we started goofing around.
  succeeded = ::VirtualProtect(reinterpret_cast<void*>(target),
                               kRequiredTargetPatchBytes,
                               old_target_function_protect,
                               &old_target_function_protect);

  // Flush the instruction cache to make sure the processor doesn't execute the
  // old version of the instructions (before our patch).
  //
  // See comment on FlushInstructionCache elsewhere in this file.
  succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
                                      target,
                                      MAX_PREAMBLE_STUB_SIZE);
  if (!succeeded) {
    SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
    return SIDESTEP_UNEXPECTED;
  }

  SIDESTEP_LOG("PreamblePatcher::Unpatch successfully unpatched.");
  return SIDESTEP_SUCCESS;
}

void PreamblePatcher::Initialize() {
  if (!initialized_) {
    SYSTEM_INFO si = { 0 };
    ::GetSystemInfo(&si);
    granularity_ = si.dwAllocationGranularity;
    pagesize_ = si.dwPageSize;
    initialized_ = true;
  }
}

unsigned char* PreamblePatcher::AllocPreambleBlockNear(void* target) {
  PreamblePage* preamble_page = preamble_pages_;
  while (preamble_page != NULL) {
    if (preamble_page->free_ != NULL) {
      __int64 val = reinterpret_cast<__int64>(preamble_page) -
          reinterpret_cast<__int64>(target);
      if ((val > 0 && val + pagesize_ <= INT_MAX) ||
          (val < 0 && val >= INT_MIN)) {
        break;
      }
    }
    preamble_page = preamble_page->next_;
  }

  // The free_ member of the page is used to store the next available block
  // of memory to use or NULL if there are no chunks available, in which case
  // we'll allocate a new page.
  if (preamble_page == NULL || preamble_page->free_ == NULL) {
    // Create a new preamble page and initialize the free list
    preamble_page = reinterpret_cast<PreamblePage*>(AllocPageNear(target));
    SIDESTEP_ASSERT(preamble_page != NULL && "Could not allocate page!");
    void** pp = &preamble_page->free_;
    unsigned char* ptr = reinterpret_cast<unsigned char*>(preamble_page) +
        MAX_PREAMBLE_STUB_SIZE;
    unsigned char* limit = reinterpret_cast<unsigned char*>(preamble_page) +
        pagesize_;
    while (ptr < limit) {
      *pp = ptr;
      pp = reinterpret_cast<void**>(ptr);
      ptr += MAX_PREAMBLE_STUB_SIZE;
    }
    *pp = NULL;
    // Insert the new page into the list
    preamble_page->magic_ = kPreamblePageMagic;
    preamble_page->next_ = preamble_pages_;
    preamble_pages_ = preamble_page;
  }
  unsigned char* ret = reinterpret_cast<unsigned char*>(preamble_page->free_);
  preamble_page->free_ = *(reinterpret_cast<void**>(preamble_page->free_));
  return ret;
}

void PreamblePatcher::FreePreambleBlock(unsigned char* block) {
  SIDESTEP_ASSERT(block != NULL);
  SIDESTEP_ASSERT(granularity_ != 0);
  uintptr_t ptr = reinterpret_cast<uintptr_t>(block);
  ptr -= ptr & (granularity_ - 1);
  PreamblePage* preamble_page = reinterpret_cast<PreamblePage*>(ptr);
  SIDESTEP_ASSERT(preamble_page->magic_ == kPreamblePageMagic);
  *(reinterpret_cast<void**>(block)) = preamble_page->free_;
  preamble_page->free_ = block;
}

void* PreamblePatcher::AllocPageNear(void* target) {
  MEMORY_BASIC_INFORMATION mbi = { 0 };
  if (!::VirtualQuery(target, &mbi, sizeof(mbi))) {
    SIDESTEP_ASSERT(false && "VirtualQuery failed on target address");
    return 0;
  }
  if (initialized_ == false) {
    PreamblePatcher::Initialize();
    SIDESTEP_ASSERT(initialized_);
  }
  void* pv = NULL;
  unsigned char* allocation_base = reinterpret_cast<unsigned char*>(
      mbi.AllocationBase);
  __int64 i = 1;
  bool high_target = reinterpret_cast<__int64>(target) > UINT_MAX;
  while (pv == NULL) {
    __int64 val = reinterpret_cast<__int64>(allocation_base) -
        (i * granularity_);
    if (high_target &&
        reinterpret_cast<__int64>(target) - val > INT_MAX) {
        // We're further than 2GB from the target
      break;
    } else if (val <= NULL) {
      // Less than 0
      break;
    }
    pv = ::VirtualAlloc(reinterpret_cast<void*>(allocation_base -
                            (i++ * granularity_)),
                        pagesize_, MEM_COMMIT | MEM_RESERVE,
                        PAGE_EXECUTE_READWRITE);
  }

  // We couldn't allocate low, try to allocate high
  if (pv == NULL) {
    i = 1;
    // Round up to the next multiple of page granularity
    allocation_base = reinterpret_cast<unsigned char*>(
        (reinterpret_cast<__int64>(target) &
        (~(granularity_ - 1))) + granularity_);
    while (pv == NULL) {
      __int64 val = reinterpret_cast<__int64>(allocation_base) +
          (i * granularity_) - reinterpret_cast<__int64>(target);
      if (val > INT_MAX || val < 0) {
        // We're too far or we overflowed
        break;
      }
      pv = ::VirtualAlloc(reinterpret_cast<void*>(allocation_base +
                              (i++ * granularity_)),
                          pagesize_, MEM_COMMIT | MEM_RESERVE,
                          PAGE_EXECUTE_READWRITE);
    }
  }
  return pv;
}

bool PreamblePatcher::IsShortConditionalJump(
    unsigned char* target,
    unsigned int instruction_size) {
  return (*(target) & 0x70) == 0x70 && instruction_size == 2;
}

bool PreamblePatcher::IsNearConditionalJump(
    unsigned char* target,
    unsigned int instruction_size) {
  return *(target) == 0xf && (*(target + 1) & 0x80) == 0x80 &&
      instruction_size == 6;
}

bool PreamblePatcher::IsNearRelativeJump(
    unsigned char* target,
    unsigned int instruction_size) {
  return *(target) == 0xe9 && instruction_size == 5;
}

bool PreamblePatcher::IsNearAbsoluteCall(
    unsigned char* target,
    unsigned int instruction_size) {
  return *(target) == 0xff && (*(target + 1) & 0x10) == 0x10 &&
      instruction_size == 6;
}

bool PreamblePatcher::IsNearRelativeCall(
    unsigned char* target,
    unsigned int instruction_size) {
  return *(target) == 0xe8 && instruction_size == 5;
}

bool PreamblePatcher::IsMovWithDisplacement(
    unsigned char* target,
    unsigned int instruction_size) {
  // In this case, the ModRM byte's mod field will be 0 and r/m will be 101b (5)
  return instruction_size == 7 && *target == 0x48 && *(target + 1) == 0x8b &&
      (*(target + 2) >> 6) == 0 && (*(target + 2) & 0x7) == 5;
}

SideStepError PreamblePatcher::PatchShortConditionalJump(
    unsigned char* source,
    unsigned int instruction_size,
    unsigned char* target,
    unsigned int* target_bytes,
    unsigned int target_size) {
  unsigned char* original_jump_dest = (source + 2) + source[1];
  unsigned char* stub_jump_from = target + 6;
  __int64 fixup_jump_offset = original_jump_dest - stub_jump_from;
  if (fixup_jump_offset > INT_MAX || fixup_jump_offset < INT_MIN) {
    SIDESTEP_ASSERT(false &&
                    "Unable to fix up short jump because target"
                    " is too far away.");
    return SIDESTEP_JUMP_INSTRUCTION;
  }

  *target_bytes = 6;
  if (target_size > *target_bytes) {
    // Convert the short jump to a near jump.
    //
    // 0f 8x xx xx xx xx = Jcc rel32off
    unsigned short jmpcode = ((0x80 | (source[0] & 0xf)) << 8) | 0x0f;
    memcpy(reinterpret_cast<void*>(target),
           reinterpret_cast<void*>(&jmpcode), 2);
    memcpy(reinterpret_cast<void*>(target + 2),
           reinterpret_cast<void*>(&fixup_jump_offset), 4);
  }

  return SIDESTEP_SUCCESS;
}

SideStepError PreamblePatcher::PatchNearJumpOrCall(
    unsigned char* source,
    unsigned int instruction_size,
    unsigned char* target,
    unsigned int* target_bytes,
    unsigned int target_size) {
  SIDESTEP_ASSERT(instruction_size == 5 || instruction_size == 6);
  unsigned int jmp_offset_in_instruction = instruction_size == 5 ? 1 : 2;
  unsigned char* original_jump_dest = reinterpret_cast<unsigned char *>(
      reinterpret_cast<__int64>(source + instruction_size) +
      *(reinterpret_cast<int*>(source + jmp_offset_in_instruction)));
  unsigned char* stub_jump_from = target + instruction_size;
  __int64 fixup_jump_offset = original_jump_dest - stub_jump_from;
  if (fixup_jump_offset > INT_MAX || fixup_jump_offset < INT_MIN) {
    SIDESTEP_ASSERT(false &&
                    "Unable to fix up near jump because target"
                    " is too far away.");
    return SIDESTEP_JUMP_INSTRUCTION;
  }

  if ((fixup_jump_offset < SCHAR_MAX && fixup_jump_offset > SCHAR_MIN)) {
    *target_bytes = 2;
    if (target_size > *target_bytes) {
      // If the new offset is in range, use a short jump instead of a near jump.
      if (source[0] == ASM_JCC32REL_0 &&
          (source[1] & ASM_JCC32REL_1_MASK) == ASM_JCC32REL_1_MASK) {
        unsigned short jmpcode = (static_cast<unsigned char>(
            fixup_jump_offset) << 8) | (0x70 | (source[1] & 0xf));
        memcpy(reinterpret_cast<void*>(target),
               reinterpret_cast<void*>(&jmpcode),
               2);
      } else {
        target[0] = ASM_JMP8REL;
        target[1] = static_cast<unsigned char>(fixup_jump_offset);
      }
    }
  } else {
    *target_bytes = instruction_size;
    if (target_size > *target_bytes) {
      memcpy(reinterpret_cast<void*>(target),
             reinterpret_cast<void*>(source),
             jmp_offset_in_instruction);
      memcpy(reinterpret_cast<void*>(target + jmp_offset_in_instruction),
             reinterpret_cast<void*>(&fixup_jump_offset),
             4);
    }
  }

  return SIDESTEP_SUCCESS;
}

SideStepError PreamblePatcher::PatchMovWithDisplacement(
     unsigned char* source,
     unsigned int instruction_size,
     unsigned char* target,
     unsigned int* target_bytes,
     unsigned int target_size) {
  SIDESTEP_ASSERT(instruction_size == 7);
  const int mov_offset_in_instruction = 3; // 0x48 0x8b 0x0d <offset>
  unsigned char* original_mov_dest = reinterpret_cast<unsigned char*>(
      reinterpret_cast<__int64>(source + instruction_size) +
      *(reinterpret_cast<int*>(source + mov_offset_in_instruction)));
  unsigned char* stub_mov_from = target + instruction_size;
  __int64 fixup_mov_offset = original_mov_dest - stub_mov_from;
  if (fixup_mov_offset > INT_MAX || fixup_mov_offset < INT_MIN) {
    SIDESTEP_ASSERT(false &&
        "Unable to fix up near MOV because target is too far away.");
    return SIDESTEP_UNEXPECTED;
  }
  *target_bytes = instruction_size;
  if (target_size > *target_bytes) {
    memcpy(reinterpret_cast<void*>(target),
           reinterpret_cast<void*>(source),
           mov_offset_in_instruction);
    memcpy(reinterpret_cast<void*>(target + mov_offset_in_instruction),
           reinterpret_cast<void*>(&fixup_mov_offset),
           4);
  }
  return SIDESTEP_SUCCESS;
}

};  // namespace sidestep

/* [<][>][^][v][top][bottom][index][help] */