/* Copyright (c) 2007, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * --- * Author: Joi Sigurdsson * * Definition of MiniDisassembler. */ #ifndef GOOGLE_PERFTOOLS_MINI_DISASSEMBLER_H_ #define GOOGLE_PERFTOOLS_MINI_DISASSEMBLER_H_ #include "config.h" #include <windows.h> #include "mini_disassembler_types.h" // compatibility shim #include "base/logging.h" #define SIDESTEP_ASSERT(cond) RAW_DCHECK(cond, #cond) #define SIDESTEP_LOG(msg) RAW_VLOG(1, msg) namespace sidestep { // This small disassembler is very limited // in its functionality, and in fact does only the bare minimum required by the // preamble patching utility. It may be useful for other purposes, however. // // The limitations include at least the following: // -# No support for coprocessor opcodes, MMX, etc. // -# No machine-readable identification of opcodes or decoding of // assembly parameters. The name of the opcode (as a string) is given, // however, to aid debugging. // // You may ask what this little disassembler actually does, then? The answer is // that it does the following, which is exactly what the patching utility needs: // -# Indicates if opcode is a jump (any kind) or a return (any kind) // because this is important for the patching utility to determine if // a function is too short or there are jumps too early in it for it // to be preamble patched. // -# The opcode length is always calculated, so that the patching utility // can figure out where the next instruction starts, and whether it // already has enough instructions to replace with the absolute jump // to the patching code. // // The usage is quite simple; just create a MiniDisassembler and use its // Disassemble() method. // // If you would like to extend this disassembler, please refer to the // IA-32 IntelĀ® Architecture Software Developer's Manual Volume 2: // Instruction Set Reference for information about operand decoding // etc. class PERFTOOLS_DLL_DECL MiniDisassembler { public: // Creates a new instance and sets defaults. // // @param operand_default_32_bits If true, the default operand size is // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits. // @param address_default_32_bits If true, the default address size is // set to 32 bits, which is the default under Win32. Otherwise it is 16 bits. MiniDisassembler(bool operand_default_32_bits, bool address_default_32_bits); // Equivalent to MiniDisassembler(true, true); MiniDisassembler(); // Attempts to disassemble a single instruction starting from the // address in memory it is pointed to. // // @param start Address where disassembly should start. // @param instruction_bytes Variable that will be <b>incremented</b> by // the length in bytes of the instruction. // @return enItJump, enItReturn or enItGeneric on success. enItUnknown // if unable to disassemble, enItUnused if this seems to be an unused // opcode. In the last two (error) cases, cbInstruction will be set // to 0xffffffff. // // @post This instance of the disassembler is ready to be used again, // with unchanged defaults from creation time. InstructionType Disassemble(unsigned char* start, unsigned int& instruction_bytes); private: // Makes the disassembler ready for reuse. void Initialize(); // Sets the flags for address and operand sizes. // @return Number of prefix bytes. InstructionType ProcessPrefixes(unsigned char* start, unsigned int& size); // Sets the flag for whether we have ModR/M, and increments // operand_bytes_ if any are specifies by the opcode directly. // @return Number of opcode bytes. InstructionType ProcessOpcode(unsigned char* start, unsigned int table, unsigned int& size); // Checks the type of the supplied operand. Increments // operand_bytes_ if it directly indicates an immediate etc. // operand. Asserts have_modrm_ if the operand specifies // a ModR/M byte. bool ProcessOperand(int flag_operand); // Increments operand_bytes_ by size specified by ModR/M and // by SIB if present. // @return 0 in case of error, 1 if there is just a ModR/M byte, // 2 if there is a ModR/M byte and a SIB byte. bool ProcessModrm(unsigned char* start, unsigned int& size); // Processes the SIB byte that it is pointed to. // @param start Pointer to the SIB byte. // @param mod The mod field from the ModR/M byte. // @return 1 to indicate success (indicates 1 SIB byte) bool ProcessSib(unsigned char* start, unsigned char mod, unsigned int& size); // The instruction type we have decoded from the opcode. InstructionType instruction_type_; // Counts the number of bytes that is occupied by operands in // the current instruction (note: we don't care about how large // operands stored in registers etc. are). unsigned int operand_bytes_; // True iff there is a ModR/M byte in this instruction. bool have_modrm_; // True iff we need to decode the ModR/M byte (sometimes it just // points to a register, we can tell by the addressing mode). bool should_decode_modrm_; // Current operand size is 32 bits if true, 16 bits if false. bool operand_is_32_bits_; // Default operand size is 32 bits if true, 16 bits if false. bool operand_default_is_32_bits_; // Current address size is 32 bits if true, 16 bits if false. bool address_is_32_bits_; // Default address size is 32 bits if true, 16 bits if false. bool address_default_is_32_bits_; // Determines if 64 bit operands are supported (x64). bool operand_default_support_64_bits_; // Current operand size is 64 bits if true, 32 bits if false. bool operand_is_64_bits_; // Huge big opcode table based on the IA-32 manual, defined // in Ia32OpcodeMap.cc static const OpcodeTable s_ia32_opcode_map_[]; // Somewhat smaller table to help with decoding ModR/M bytes // when 16-bit addressing mode is being used. Defined in // Ia32ModrmMap.cc static const ModrmEntry s_ia16_modrm_map_[]; // Somewhat smaller table to help with decoding ModR/M bytes // when 32-bit addressing mode is being used. Defined in // Ia32ModrmMap.cc static const ModrmEntry s_ia32_modrm_map_[]; // Indicators of whether we got certain prefixes that certain // silly Intel instructions depend on in nonstandard ways for // their behaviors. bool got_f2_prefix_, got_f3_prefix_, got_66_prefix_; }; }; // namespace sidestep #endif // GOOGLE_PERFTOOLS_MINI_DISASSEMBLER_H_