// Copyright (c) 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Sanjay Ghemawat // // Produce stack trace #ifndef BASE_STACKTRACE_X86_INL_H_ #define BASE_STACKTRACE_X86_INL_H_ // Note: this file is included into stacktrace.cc more than once. // Anything that should only be defined once should be here: #include "config.h" #include <stdlib.h> // for NULL #include <assert.h> #if defined(HAVE_SYS_UCONTEXT_H) #include <sys/ucontext.h> #elif defined(HAVE_UCONTEXT_H) #include <ucontext.h> // for ucontext_t #elif defined(HAVE_CYGWIN_SIGNAL_H) // cygwin/signal.h has a buglet where it uses pthread_attr_t without // #including <pthread.h> itself. So we have to do it. # ifdef HAVE_PTHREAD # include <pthread.h> # endif #include <cygwin/signal.h> typedef ucontext ucontext_t; #endif #ifdef HAVE_STDINT_H #include <stdint.h> // for uintptr_t #endif #ifdef HAVE_UNISTD_H #include <unistd.h> #endif #ifdef HAVE_MMAP #include <sys/mman.h> // for msync #include "base/vdso_support.h" #endif #include "gperftools/stacktrace.h" #if defined(KEEP_SHADOW_STACKS) #include "linux_shadow_stacks.h" #endif // KEEP_SHADOW_STACKS #if defined(__linux__) && defined(__i386__) && defined(__ELF__) && defined(HAVE_MMAP) // Count "push %reg" instructions in VDSO __kernel_vsyscall(), // preceeding "syscall" or "sysenter". // If __kernel_vsyscall uses frame pointer, answer 0. // // kMaxBytes tells how many instruction bytes of __kernel_vsyscall // to analyze before giving up. Up to kMaxBytes+1 bytes of // instructions could be accessed. // // Here are known __kernel_vsyscall instruction sequences: // // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). // Used on Intel. // 0xffffe400 <__kernel_vsyscall+0>: push %ecx // 0xffffe401 <__kernel_vsyscall+1>: push %edx // 0xffffe402 <__kernel_vsyscall+2>: push %ebp // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp // 0xffffe405 <__kernel_vsyscall+5>: sysenter // // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). // Used on AMD. // 0xffffe400 <__kernel_vsyscall+0>: push %ebp // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp // 0xffffe403 <__kernel_vsyscall+3>: syscall // // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) // 0xffffe400 <__kernel_vsyscall+0>: int $0x80 // 0xffffe401 <__kernel_vsyscall+1>: ret // static const int kMaxBytes = 10; // We use assert()s instead of DCHECK()s -- this is too low level // for DCHECK(). static int CountPushInstructions(const unsigned char *const addr) { int result = 0; for (int i = 0; i < kMaxBytes; ++i) { if (addr[i] == 0x89) { // "mov reg,reg" if (addr[i + 1] == 0xE5) { // Found "mov %esp,%ebp". return 0; } ++i; // Skip register encoding byte. } else if (addr[i] == 0x0F && (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { // Found "sysenter" or "syscall". return result; } else if ((addr[i] & 0xF0) == 0x50) { // Found "push %reg". ++result; } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { // Found "int $0x80" assert(result == 0); return 0; } else { // Unexpected instruction. assert(0 == "unexpected instruction in __kernel_vsyscall"); return 0; } } // Unexpected: didn't find SYSENTER or SYSCALL in // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. assert(0 == "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); return 0; } #endif // Given a pointer to a stack frame, locate and return the calling // stackframe, or return NULL if no stackframe can be found. Perform sanity // checks (the strictness of which is controlled by the boolean parameter // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. template<bool STRICT_UNWINDING, bool WITH_CONTEXT> static void **NextStackFrame(void **old_sp, const void *uc) { void **new_sp = (void **) *old_sp; #if defined(__linux__) && defined(__i386__) && defined(HAVE_VDSO_SUPPORT) if (WITH_CONTEXT && uc != NULL) { // How many "push %reg" instructions are there at __kernel_vsyscall? // This is constant for a given kernel and processor, so compute // it only once. static int num_push_instructions = -1; // Sentinel: not computed yet. // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly // be there. static const unsigned char *kernel_rt_sigreturn_address = NULL; static const unsigned char *kernel_vsyscall_address = NULL; if (num_push_instructions == -1) { base::VDSOSupport vdso; if (vdso.IsPresent()) { base::VDSOSupport::SymbolInfo rt_sigreturn_symbol_info; base::VDSOSupport::SymbolInfo vsyscall_symbol_info; if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, &rt_sigreturn_symbol_info) || !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, &vsyscall_symbol_info) || rt_sigreturn_symbol_info.address == NULL || vsyscall_symbol_info.address == NULL) { // Unexpected: 32-bit VDSO is present, yet one of the expected // symbols is missing or NULL. assert(0 == "VDSO is present, but doesn't have expected symbols"); num_push_instructions = 0; } else { kernel_rt_sigreturn_address = reinterpret_cast<const unsigned char *>( rt_sigreturn_symbol_info.address); kernel_vsyscall_address = reinterpret_cast<const unsigned char *>( vsyscall_symbol_info.address); num_push_instructions = CountPushInstructions(kernel_vsyscall_address); } } else { num_push_instructions = 0; } } if (num_push_instructions != 0 && kernel_rt_sigreturn_address != NULL && old_sp[1] == kernel_rt_sigreturn_address) { const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); // This kernel does not use frame pointer in its VDSO code, // and so %ebp is not suitable for unwinding. void **const reg_ebp = reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); const unsigned char *const reg_eip = reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); if (new_sp == reg_ebp && kernel_vsyscall_address <= reg_eip && reg_eip - kernel_vsyscall_address < kMaxBytes) { // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. // Restore from 'ucv' instead. void **const reg_esp = reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); // Check that alleged %esp is not NULL and is reasonably aligned. if (reg_esp && ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { // Check that alleged %esp is actually readable. This is to prevent // "double fault" in case we hit the first fault due to e.g. stack // corruption. // // page_size is linker-initalized to avoid async-unsafe locking // that GCC would otherwise insert (__cxa_guard_acquire etc). static int page_size; if (page_size == 0) { // First time through. page_size = getpagesize(); } void *const reg_esp_aligned = reinterpret_cast<void *>( (uintptr_t)(reg_esp + num_push_instructions - 1) & ~(page_size - 1)); if (msync(reg_esp_aligned, page_size, MS_ASYNC) == 0) { // Alleged %esp is readable, use it for further unwinding. new_sp = reinterpret_cast<void **>( reg_esp[num_push_instructions - 1]); } } } } } #endif // Check that the transition from frame pointer old_sp to frame // pointer new_sp isn't clearly bogus if (STRICT_UNWINDING) { // With the stack growing downwards, older stack frame must be // at a greater address that the current one. if (new_sp <= old_sp) return NULL; // Assume stack frames larger than 100,000 bytes are bogus. if ((uintptr_t)new_sp - (uintptr_t)old_sp > 100000) return NULL; } else { // In the non-strict mode, allow discontiguous stack frames. // (alternate-signal-stacks for example). if (new_sp == old_sp) return NULL; if (new_sp > old_sp) { // And allow frames upto about 1MB. const uintptr_t delta = (uintptr_t)new_sp - (uintptr_t)old_sp; const uintptr_t acceptable_delta = 1000000; if (delta > acceptable_delta) { return NULL; } } } if ((uintptr_t)new_sp & (sizeof(void *) - 1)) return NULL; #ifdef __i386__ // On 64-bit machines, the stack pointer can be very close to // 0xffffffff, so we explicitly check for a pointer into the // last two pages in the address space if ((uintptr_t)new_sp >= 0xffffe000) return NULL; #endif #ifdef HAVE_MMAP if (!STRICT_UNWINDING) { // Lax sanity checks cause a crash on AMD-based machines with // VDSO-enabled kernels. // Make an extra sanity check to insure new_sp is readable. // Note: NextStackFrame<false>() is only called while the program // is already on its last leg, so it's ok to be slow here. static int page_size = getpagesize(); void *new_sp_aligned = (void *)((uintptr_t)new_sp & ~(page_size - 1)); if (msync(new_sp_aligned, page_size, MS_ASYNC) == -1) return NULL; } #endif return new_sp; } #endif // BASE_STACKTRACE_X86_INL_H_ // Note: this part of the file is included several times. // Do not put globals below. // The following 4 functions are generated from the code below: // GetStack{Trace,Frames}() // GetStack{Trace,Frames}WithContext() // // These functions take the following args: // void** result: the stack-trace, as an array // int* sizes: the size of each stack frame, as an array // (GetStackFrames* only) // int max_depth: the size of the result (and sizes) array(s) // int skip_count: how many stack pointers to skip before storing in result // void* ucp: a ucontext_t* (GetStack{Trace,Frames}WithContext only) int GET_STACK_TRACE_OR_FRAMES { void **sp; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __llvm__ // __builtin_frame_address(0) can return the wrong address on gcc-4.1.0-k8. // It's always correct on llvm, and the techniques below aren't (in // particular, llvm-gcc will make a copy of pcs, so it's not in sp[2]), // so we also prefer __builtin_frame_address when running under llvm. sp = reinterpret_cast<void**>(__builtin_frame_address(0)); #elif defined(__i386__) // Stack frame format: // sp[0] pointer to previous frame // sp[1] caller address // sp[2] first argument // ... // NOTE: This will break under llvm, since result is a copy and not in sp[2] sp = (void **)&result - 2; #elif defined(__x86_64__) unsigned long rbp; // Move the value of the register %rbp into the local variable rbp. // We need 'volatile' to prevent this instruction from getting moved // around during optimization to before function prologue is done. // An alternative way to achieve this // would be (before this __asm__ instruction) to call Noop() defined as // static void Noop() __attribute__ ((noinline)); // prevent inlining // static void Noop() { asm(""); } // prevent optimizing-away __asm__ volatile ("mov %%rbp, %0" : "=r" (rbp)); // Arguments are passed in registers on x86-64, so we can't just // offset from &result sp = (void **) rbp; #else # error Using stacktrace_x86-inl.h on a non x86 architecture! #endif int n = 0; #if defined(KEEP_SHADOW_STACKS) void **shadow_ip_stack; void **shadow_sp_stack; int stack_size; shadow_ip_stack = (void**) get_shadow_ip_stack(&stack_size); shadow_sp_stack = (void**) get_shadow_sp_stack(&stack_size); int shadow_index = stack_size - 1; for (int i = stack_size - 1; i >= 0; i--) { if (sp == shadow_sp_stack[i]) { shadow_index = i; break; } } void **prev_sp = NULL; #endif // KEEP_SHADOW_STACKS while (sp && n < max_depth) { if (*(sp+1) == reinterpret_cast<void *>(0)) { // In 64-bit code, we often see a frame that // points to itself and has a return address of 0. break; } #if !IS_WITH_CONTEXT const void *const ucp = NULL; #endif void **next_sp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(sp, ucp); if (skip_count > 0) { skip_count--; #if defined(KEEP_SHADOW_STACKS) shadow_index--; #endif // KEEP_SHADOW_STACKS } else { result[n] = *(sp+1); #if defined(KEEP_SHADOW_STACKS) if ((shadow_index > 0) && (sp == shadow_sp_stack[shadow_index])) { shadow_index--; } #endif // KEEP_SHADOW_STACKS #if IS_STACK_FRAMES if (next_sp > sp) { sizes[n] = (uintptr_t)next_sp - (uintptr_t)sp; } else { // A frame-size of 0 is used to indicate unknown frame size. sizes[n] = 0; } #endif n++; } #if defined(KEEP_SHADOW_STACKS) prev_sp = sp; #endif // KEEP_SHADOW_STACKS sp = next_sp; } #if defined(KEEP_SHADOW_STACKS) if (shadow_index >= 0) { for (int i = shadow_index; i >= 0; i--) { if (shadow_sp_stack[i] > prev_sp) { result[n] = shadow_ip_stack[i]; if (n + 1 < max_depth) { n++; continue; } } break; } } #endif // KEEP_SHADOW_STACKS return n; }