// Copyright (c) 2011, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Doug Kwan // This is inspired by Craig Silverstein's PowerPC stacktrace code. // #ifndef BASE_STACKTRACE_ARM_INL_H_ #define BASE_STACKTRACE_ARM_INL_H_ // Note: this file is included into stacktrace.cc more than once. // Anything that should only be defined once should be here: #include <stdint.h> // for uintptr_t #include "base/basictypes.h" // for NULL #include <gperftools/stacktrace.h> // WARNING: // This only works if all your code is in either ARM or THUMB mode. With // interworking, the frame pointer of the caller can either be in r11 (ARM // mode) or r7 (THUMB mode). A callee only saves the frame pointer of its // mode in a fixed location on its stack frame. If the caller is a different // mode, there is no easy way to find the frame pointer. It can either be // still in the designated register or saved on stack along with other callee // saved registers. // Given a pointer to a stack frame, locate and return the calling // stackframe, or return NULL if no stackframe can be found. Perform sanity // checks (the strictness of which is controlled by the boolean parameter // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. template<bool STRICT_UNWINDING> static void **NextStackFrame(void **old_sp) { void **new_sp = (void**) old_sp[-1]; // Check that the transition from frame pointer old_sp to frame // pointer new_sp isn't clearly bogus if (STRICT_UNWINDING) { // With the stack growing downwards, older stack frame must be // at a greater address that the current one. if (new_sp <= old_sp) return NULL; // Assume stack frames larger than 100,000 bytes are bogus. if ((uintptr_t)new_sp - (uintptr_t)old_sp > 100000) return NULL; } else { // In the non-strict mode, allow discontiguous stack frames. // (alternate-signal-stacks for example). if (new_sp == old_sp) return NULL; // And allow frames upto about 1MB. if ((new_sp > old_sp) && ((uintptr_t)new_sp - (uintptr_t)old_sp > 1000000)) return NULL; } if ((uintptr_t)new_sp & (sizeof(void *) - 1)) return NULL; return new_sp; } // This ensures that GetStackTrace stes up the Link Register properly. #ifdef __GNUC__ void StacktraceArmDummyFunction() __attribute__((noinline)); void StacktraceArmDummyFunction() { __asm__ volatile(""); } #else # error StacktraceArmDummyFunction() needs to be ported to this platform. #endif #endif // BASE_STACKTRACE_ARM_INL_H_ // Note: this part of the file is included several times. // Do not put globals below. // The following 4 functions are generated from the code below: // GetStack{Trace,Frames}() // GetStack{Trace,Frames}WithContext() // // These functions take the following args: // void** result: the stack-trace, as an array // int* sizes: the size of each stack frame, as an array // (GetStackFrames* only) // int max_depth: the size of the result (and sizes) array(s) // int skip_count: how many stack pointers to skip before storing in result // void* ucp: a ucontext_t* (GetStack{Trace,Frames}WithContext only) int GET_STACK_TRACE_OR_FRAMES { #ifdef __GNUC__ void **sp = reinterpret_cast<void**>(__builtin_frame_address(0)); #else # error reading stack point not yet supported on this platform. #endif // On ARM, the return address is stored in the link register (r14). // This is not saved on the stack frame of a leaf function. To // simplify code that reads return addresses, we call a dummy // function so that the return address of this function is also // stored in the stack frame. This works at least for gcc. StacktraceArmDummyFunction(); int n = 0; while (sp && n < max_depth) { // The GetStackFrames routine is called when we are in some // informational context (the failure signal handler for example). // Use the non-strict unwinding rules to produce a stack trace // that is as complete as possible (even if it contains a few bogus // entries in some rare cases). void **next_sp = NextStackFrame<IS_STACK_FRAMES == 0>(sp); if (skip_count > 0) { skip_count--; } else { result[n] = *sp; #if IS_STACK_FRAMES if (next_sp > sp) { sizes[n] = (uintptr_t)next_sp - (uintptr_t)sp; } else { // A frame-size of 0 is used to indicate unknown frame size. sizes[n] = 0; } #endif n++; } sp = next_sp; } return n; }