root/third_party/sqlite/src/src/vdbe.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. updateMaxBlobsize
  2. sqlite3VdbeMemStoreType
  3. allocateCursor
  4. applyNumericAffinity
  5. applyAffinity
  6. sqlite3_value_numeric_type
  7. sqlite3ValueApplyAffinity
  8. sqlite3VdbeMemPrettyPrint
  9. memTracePrint
  10. registerTrace
  11. checkSavepointCount
  12. importVtabErrMsg
  13. sqlite3VdbeExec

/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the 
** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances.  This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement.  VDBE programs are 
** similar in form to assembly language.  The program consists of
** a linear sequence of operations.  Each operation has an opcode 
** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4 
** is a null-terminated string.  Operand P5 is an unsigned character.
** Few opcodes use all 5 operands.
**
** Computation results are stored on a set of registers numbered beginning
** with 1 and going up to Vdbe.nMem.  Each register can store
** either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value.  An implicit conversion from one
** type to the other occurs as necessary.
** 
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Invoke this macro on memory cells just prior to changing the
** value of the cell.  This macro verifies that shallow copies are
** not misused.
*/
#ifdef SQLITE_DEBUG
# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
#else
# define memAboutToChange(P,M)
#endif

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
** procedures use this information to make sure that indices are
** working correctly.  This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_search_count = 0;
#endif

/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
** field of the sqlite3 structure is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only.  It does not function
** in an ordinary build.
*/
#ifdef SQLITE_TEST
int sqlite3_interrupt_count = 0;
#endif

/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed.  The test procedures use this information to make sure that
** sorting is occurring or not occurring at appropriate times.   This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_sort_count = 0;
#endif

/*
** The next global variable records the size of the largest MEM_Blob
** or MEM_Str that has been used by a VDBE opcode.  The test procedures
** use this information to make sure that the zero-blob functionality
** is working correctly.   This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_max_blobsize = 0;
static void updateMaxBlobsize(Mem *p){
  if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
    sqlite3_max_blobsize = p->n;
  }
}
#endif

/*
** The next global variable is incremented each type the OP_Found opcode
** is executed. This is used to test whether or not the foreign key
** operation implemented using OP_FkIsZero is working. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_found_count = 0;
#endif

/*
** Test a register to see if it exceeds the current maximum blob size.
** If it does, record the new maximum blob size.
*/
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
# define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
#else
# define UPDATE_MAX_BLOBSIZE(P)
#endif

/*
** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
     { goto no_mem; }

/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the register
** does not control the string, it might be deleted without the register
** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)

/*
** Argument pMem points at a register that will be passed to a
** user-defined function or returned to the user as the result of a query.
** This routine sets the pMem->type variable used by the sqlite3_value_*() 
** routines.
*/
void sqlite3VdbeMemStoreType(Mem *pMem){
  int flags = pMem->flags;
  if( flags & MEM_Null ){
    pMem->type = SQLITE_NULL;
  }
  else if( flags & MEM_Int ){
    pMem->type = SQLITE_INTEGER;
  }
  else if( flags & MEM_Real ){
    pMem->type = SQLITE_FLOAT;
  }
  else if( flags & MEM_Str ){
    pMem->type = SQLITE_TEXT;
  }else{
    pMem->type = SQLITE_BLOB;
  }
}

/*
** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* When database the cursor belongs to, or -1 */
  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different
  **     purposes in a vdbe program. The different uses might require
  **     different sized allocations. Memory cells provide growable
  **     allocations.
  **
  **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
  **     be freed lazily via the sqlite3_release_memory() API. This
  **     minimizes the number of malloc calls made by the system.
  **
  ** Memory cells for cursors are allocated at the top of the address
  ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
  ** cursor 1 is managed by memory cell (p->nMem-1), etc.
  */
  Mem *pMem = &p->aMem[p->nMem-iCur];

  int nByte;
  VdbeCursor *pCx = 0;
  nByte = 
      ROUND8(sizeof(VdbeCursor)) + 
      (isBtreeCursor?sqlite3BtreeCursorSize():0) + 
      2*nField*sizeof(u32);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;
    if( nField ){
      pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
    }
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
      sqlite3BtreeCursorZero(pCx->pCursor);
    }
  }
  return pCx;
}

/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string
** looks like a number, convert it into a number.  If it does not
** look like a number, leave it alone.
*/
static void applyNumericAffinity(Mem *pRec){
  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
    double rValue;
    i64 iValue;
    u8 enc = pRec->enc;
    if( (pRec->flags&MEM_Str)==0 ) return;
    if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
    if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
      pRec->u.i = iValue;
      pRec->flags |= MEM_Int;
    }else{
      pRec->r = rValue;
      pRec->flags |= MEM_Real;
    }
  }
}

/*
** Processing is determine by the affinity parameter:
**
** SQLITE_AFF_INTEGER:
** SQLITE_AFF_REAL:
** SQLITE_AFF_NUMERIC:
**    Try to convert pRec to an integer representation or a 
**    floating-point representation if an integer representation
**    is not possible.  Note that the integer representation is
**    always preferred, even if the affinity is REAL, because
**    an integer representation is more space efficient on disk.
**
** SQLITE_AFF_TEXT:
**    Convert pRec to a text representation.
**
** SQLITE_AFF_NONE:
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){
  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc);
    }
    pRec->flags &= ~(MEM_Real|MEM_Int);
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    applyNumericAffinity(pRec);
    if( pRec->flags & MEM_Real ){
      sqlite3VdbeIntegerAffinity(pRec);
    }
  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
  Mem *pMem = (Mem*)pVal;
  if( pMem->type==SQLITE_TEXT ){
    applyNumericAffinity(pMem);
    sqlite3VdbeMemStoreType(pMem);
  }
  return pMem->type;
}

/*
** Exported version of applyAffinity(). This one works on sqlite3_value*, 
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(
  sqlite3_value *pVal, 
  u8 affinity, 
  u8 enc
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
  char *zCsr = zBuf;
  int f = pMem->flags;

  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};

  if( f&MEM_Blob ){
    int i;
    char c;
    if( f & MEM_Dyn ){
      c = 'z';
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
    }else if( f & MEM_Static ){
      c = 't';
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
    }else if( f & MEM_Ephem ){
      c = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      c = 's';
    }

    sqlite3_snprintf(100, zCsr, "%c", c);
    zCsr += sqlite3Strlen30(zCsr);
    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
    zCsr += sqlite3Strlen30(zCsr);
    for(i=0; i<16 && i<pMem->n; i++){
      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
      zCsr += sqlite3Strlen30(zCsr);
    }
    for(i=0; i<16 && i<pMem->n; i++){
      char z = pMem->z[i];
      if( z<32 || z>126 ) *zCsr++ = '.';
      else *zCsr++ = z;
    }

    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
    zCsr += sqlite3Strlen30(zCsr);
    if( f & MEM_Zero ){
      sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
      zCsr += sqlite3Strlen30(zCsr);
    }
    *zCsr = '\0';
  }else if( f & MEM_Str ){
    int j, k;
    zBuf[0] = ' ';
    if( f & MEM_Dyn ){
      zBuf[1] = 'z';
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
    }else if( f & MEM_Static ){
      zBuf[1] = 't';
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
    }else if( f & MEM_Ephem ){
      zBuf[1] = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      zBuf[1] = 's';
    }
    k = 2;
    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
    k += sqlite3Strlen30(&zBuf[k]);
    zBuf[k++] = '[';
    for(j=0; j<15 && j<pMem->n; j++){
      u8 c = pMem->z[j];
      if( c>=0x20 && c<0x7f ){
        zBuf[k++] = c;
      }else{
        zBuf[k++] = '.';
      }
    }
    zBuf[k++] = ']';
    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
    k += sqlite3Strlen30(&zBuf[k]);
    zBuf[k++] = 0;
  }
}
#endif

#ifdef SQLITE_DEBUG
/*
** Print the value of a register for tracing purposes:
*/
static void memTracePrint(FILE *out, Mem *p){
  if( p->flags & MEM_Null ){
    fprintf(out, " NULL");
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
    fprintf(out, " si:%lld", p->u.i);
  }else if( p->flags & MEM_Int ){
    fprintf(out, " i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
  }else if( p->flags & MEM_Real ){
    fprintf(out, " r:%g", p->r);
#endif
  }else if( p->flags & MEM_RowSet ){
    fprintf(out, " (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    fprintf(out, " ");
    fprintf(out, "%s", zBuf);
  }
}
static void registerTrace(FILE *out, int iReg, Mem *p){
  fprintf(out, "REG[%d] = ", iReg);
  memTracePrint(out, p);
  fprintf(out, "\n");
}
#endif

#ifdef SQLITE_DEBUG
#  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
#else
#  define REGISTER_TRACE(R,M)
#endif


#ifdef VDBE_PROFILE

/* 
** hwtime.h contains inline assembler code for implementing 
** high-performance timing routines.
*/
#include "hwtime.h"

#endif

/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite3_interrupt() routine has been called.  If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop.  This test used to be on every single instruction,
** but that meant we more testing that we needed.  By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;


#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
** checks that the sqlite3.nTransaction variable is correctly set to
** the number of non-transaction savepoints currently in the 
** linked list starting at sqlite3.pSavepoint.
** 
** Usage:
**
**     assert( checkSavepointCount(db) );
*/
static int checkSavepointCount(sqlite3 *db){
  int n = 0;
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;
}


/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately.  There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqlite3VdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
int sqlite3VdbeExec(
  Vdbe *p                    /* The VDBE */
){
  int pc=0;                  /* The program counter */
  Op *aOp = p->aOp;          /* Copy of p->aOp */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
  u8 encoding = ENC(db);     /* The database encoding */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int checkProgress;         /* True if progress callbacks are enabled */
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */
  int iCompare = 0;          /* Result of last OP_Compare operation */
  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  sqlite3VdbeEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  CHECK_FOR_INTERRUPT;
  sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  checkProgress = db->xProgress!=0;
#endif
#ifdef SQLITE_DEBUG
  sqlite3BeginBenignMalloc();
  if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
    int i;
    printf("VDBE Program Listing:\n");
    sqlite3VdbePrintSql(p);
    for(i=0; i<p->nOp; i++){
      sqlite3VdbePrintOp(stdout, i, &aOp[i]);
    }
  }
  sqlite3EndBenignMalloc();
#endif
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    origPc = pc;
    start = sqlite3Hwtime();
#endif
    pOp = &aOp[pc];

    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( p->trace ){
      if( pc==0 ){
        printf("VDBE Execution Trace:\n");
        sqlite3VdbePrintSql(p);
      }
      sqlite3VdbePrintOp(p->trace, pc, pOp);
    }
#endif
      

    /* Check to see if we need to simulate an interrupt.  This only happens
    ** if we have a special test build.
    */
#ifdef SQLITE_TEST
    if( sqlite3_interrupt_count>0 ){
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif

#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
    /* Call the progress callback if it is configured and the required number
    ** of VDBE ops have been executed (either since this invocation of
    ** sqlite3VdbeExec() or since last time the progress callback was called).
    ** If the progress callback returns non-zero, exit the virtual machine with
    ** a return code SQLITE_ABORT.
    */
    if( checkProgress ){
      if( db->nProgressOps==nProgressOps ){
        int prc;
        prc = db->xProgress(db->pProgressArg);
        if( prc!=0 ){
          rc = SQLITE_INTERRUPT;
          goto vdbe_error_halt;
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

    /* On any opcode with the "out2-prerelase" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      sqlite3VdbeMemReleaseExternal(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=p->nMem );
      assert( memIsValid(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
    if( (pOp->opflags & OPFLG_IN2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      assert( memIsValid(&aMem[pOp->p2]) );
      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_IN3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      assert( memIsValid(&aMem[pOp->p3]) );
      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
    }
    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p2]);
    }
    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
      assert( pOp->p3>0 );
      assert( pOp->p3<=p->nMem );
      memAboutToChange(p, &aMem[pOp->p3]);
    }
#endif
  
    switch( pOp->opcode ){

/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine.  If we follow the usual
** indentation conventions, each case should be indented by 6 spaces.  But
** that is a lot of wasted space on the left margin.  So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important.  The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_".  The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
**     Formatting is important to scripts that scan this file.
**     Do not deviate from the formatting style currently in use.
**
*****************************************************************************/

/* Opcode:  Goto * P2 * * *
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {             /* jump */
  CHECK_FOR_INTERRUPT;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: {            /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  memAboutToChange(p, pIn1);
  pIn1->flags = MEM_Int;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return P1 * * * *
**
** Jump to the next instruction after the address in register P1.
*/
case OP_Return: {           /* in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags & MEM_Int );
  pc = (int)pIn1->u.i;
  break;
}

/* Opcode:  Yield P1 * * * *
**
** Swap the program counter with the value in register P1.
*/
case OP_Yield: {            /* in1 */
  int pcDest;
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  pIn1->flags = MEM_Int;
  pcDest = (int)pIn1->u.i;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pcDest;
  break;
}

/* Opcode:  HaltIfNull  P1 P2 P3 P4 *
**
** Check the value in register P3.  If is is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
** value in register P3 is not NULL, then this routine is a no-op.
*/
case OP_HaltIfNull: {      /* in3 */
  pIn3 = &aMem[pOp->p3];
  if( (pIn3->flags & MEM_Null)==0 ) break;
  /* Fall through into OP_Halt */
}

/* Opcode:  Halt P1 P2 * P4 *
**
** Exit immediately.  All open cursors, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value.  If P1!=0 then P2 will determine
** whether or not to rollback the current transaction.  Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    VdbeFrame *pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pc = sqlite3VdbeFrameRestore(pFrame);
    if( pOp->p2==OE_Ignore ){
      /* Instruction pc is the OP_Program that invoked the sub-program 
      ** currently being halted. If the p2 instruction of this OP_Halt
      ** instruction is set to OE_Ignore, then the sub-program is throwing
      ** an IGNORE exception. In this case jump to the address specified
      ** as the p2 of the calling OP_Program.  */
      pc = p->aOp[pc].p2-1;
    }
    aOp = p->aOp;
    aMem = p->aMem;
    break;
  }

  p->rc = pOp->p1;
  p->errorAction = (u8)pOp->p2;
  p->pc = pc;
  if( pOp->p4.z ){
    assert( p->rc!=SQLITE_OK );
    sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
    testcase( sqlite3GlobalConfig.xLog!=0 );
    sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
  }else if( p->rc ){
    testcase( sqlite3GlobalConfig.xLog!=0 );
    sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
  }
  rc = sqlite3VdbeHalt(p);
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
  if( rc==SQLITE_BUSY ){
    p->rc = rc = SQLITE_BUSY;
  }else{
    assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
    assert( rc==SQLITE_OK || db->nDeferredCons>0 );
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
  }
  goto vdbe_return;
}

/* Opcode: Integer P1 P2 * * *
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer: {         /* out2-prerelease */
  pOut->u.i = pOp->p1;
  break;
}

/* Opcode: Int64 * P2 * P4 *
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64: {           /* out2-prerelease */
  assert( pOp->p4.pI64!=0 );
  pOut->u.i = *pOp->p4.pI64;
  break;
}

#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->zMalloc==pOut->z );
    assert( pOut->flags & MEM_Dyn );
    pOut->zMalloc = 0;
    pOut->flags |= MEM_Static;
    pOut->flags &= ~MEM_Dyn;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 * P4 *
**
** The string value P4 of length P1 (bytes) is stored in register P2.
*/
case OP_String: {          /* out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Null * P2 * * *
**
** Write a NULL into register P2.
*/
case OP_Null: {           /* out2-prerelease */
  pOut->flags = MEM_Null;
  break;
}


/* Opcode: Blob P1 P2 * P4
**
** P4 points to a blob of data P1 bytes long.  Store this
** blob in register P2.
*/
case OP_Blob: {                /* out2-prerelease */
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Variable P1 P2 * P4 *
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
**
** Move the values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  while( n-- ){
    assert( pOut<=&aMem[p->nMem] );
    assert( pIn1<=&aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    zMalloc = pOut->zMalloc;
    pOut->zMalloc = 0;
    sqlite3VdbeMemMove(pOut, pIn1);
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }
  break;
}

/* Opcode: Copy P1 P2 * * *
**
** Make a copy of register P1 into register P2.
**
** This instruction makes a deep copy of the value.  A duplicate
** is made of any string or blob constant.  See also OP_SCopy.
*/
case OP_Copy: {             /* in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  assert( pOut!=pIn1 );
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
  Deephemeralize(pOut);
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}

/* Opcode: SCopy P1 P2 * * *
**
** Make a shallow copy of register P1 into register P2.
**
** This instruction makes a shallow copy of the value.  If the value
** is a string or blob, then the copy is only a pointer to the
** original and hence if the original changes so will the copy.
** Worse, if the original is deallocated, the copy becomes invalid.
** Thus the program must guarantee that the original will not change
** during the lifetime of the copy.  Use OP_Copy to make a complete
** copy.
*/
case OP_SCopy: {            /* in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  assert( pOut!=pIn1 );
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#ifdef SQLITE_DEBUG
  if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
#endif
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}

/* Opcode: ResultRow P1 P2 * * *
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.
*/
case OP_ResultRow: {
  Mem *pMem;
  int i;
  assert( p->nResColumn==pOp->p2 );
  assert( pOp->p1>0 );
  assert( pOp->p1+pOp->p2<=p->nMem+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );
    break;
  }

  /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 
  ** DML statements invoke this opcode to return the number of rows 
  ** modified to the user. This is the only way that a VM that
  ** opens a statement transaction may invoke this opcode.
  **
  ** In case this is such a statement, close any statement transaction
  ** opened by this VM before returning control to the user. This is to
  ** ensure that statement-transactions are always nested, not overlapping.
  ** If the open statement-transaction is not closed here, then the user
  ** may step another VM that opens its own statement transaction. This
  ** may lead to overlapping statement transactions.
  **
  ** The statement transaction is never a top-level transaction.  Hence
  ** the RELEASE call below can never fail.
  */
  assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
  rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
  if( NEVER(rc!=SQLITE_OK) ){
    break;
  }

  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;

  /* Make sure the results of the current row are \000 terminated
  ** and have an assigned type.  The results are de-ephemeralized as
  ** as side effect.
  */
  pMem = p->pResultSet = &aMem[pOp->p1];
  for(i=0; i<pOp->p2; i++){
    assert( memIsValid(&pMem[i]) );
    Deephemeralize(&pMem[i]);
    assert( (pMem[i].flags & MEM_Ephem)==0
            || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
    sqlite3VdbeMemNulTerminate(&pMem[i]);
    sqlite3VdbeMemStoreType(&pMem[i]);
    REGISTER_TRACE(pOp->p1+i, &pMem[i]);
  }
  if( db->mallocFailed ) goto no_mem;

  /* Return SQLITE_ROW
  */
  p->pc = pc + 1;
  rc = SQLITE_ROW;
  goto vdbe_return;
}

/* Opcode: Concat P1 P2 P3 * *
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
** If either the P1 or P2 text are NULL then store NULL in P3.
**
**   P3 = P2 || P1
**
** It is illegal for P1 and P3 to be the same register. Sometimes,
** if P3 is the same register as P2, the implementation is able
** to avoid a memcpy().
*/
case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
  i64 nByte;

  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  pOut = &aMem[pOp->p3];
  assert( pIn1!=pOut );
  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
    break;
  }
  if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
  Stringify(pIn1, encoding);
  Stringify(pIn2, encoding);
  nByte = pIn1->n + pIn2->n;
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  MemSetTypeFlag(pOut, MEM_Str);
  if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
    goto no_mem;
  }
  if( pOut!=pIn2 ){
    memcpy(pOut->z, pIn2->z, pIn2->n);
  }
  memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
  pOut->z[nByte] = 0;
  pOut->z[nByte+1] = 0;
  pOut->flags |= MEM_Term;
  pOut->n = (int)nByte;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Add P1 P2 P3 * *
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
**
**
** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in 
** register P1 is zero, then the result is NULL. If either input is 
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3. 
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  int flags;      /* Combined MEM_* flags from both inputs */
  i64 iA;         /* Integer value of left operand */
  i64 iB;         /* Integer value of right operand */
  double rA;      /* Real value of left operand */
  double rB;      /* Real value of right operand */

  pIn1 = &aMem[pOp->p1];
  applyNumericAffinity(pIn1);
  pIn2 = &aMem[pOp->p2];
  applyNumericAffinity(pIn2);
  pOut = &aMem[pOp->p3];
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
    iA = pIn1->u.i;
    iB = pIn2->u.i;
    switch( pOp->opcode ){
      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
      case OP_Divide: {
        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
        iB /= iA;
        break;
      }
      default: {
        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);
  }else{
fp_math:
    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;
      case OP_Subtract:    rB -= rA;       break;
      case OP_Multiply:    rB *= rA;       break;
      case OP_Divide: {
        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
        if( rA==(double)0 ) goto arithmetic_result_is_null;
        rB /= rA;
        break;
      }
      default: {
        iA = (i64)rA;
        iB = (i64)rB;
        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 ) iA = 1;
        rB = (double)(iB % iA);
        break;
      }
    }
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( (flags & MEM_Real)==0 ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;

arithmetic_result_is_null:
  sqlite3VdbeMemSetNull(pOut);
  break;
}

/* Opcode: CollSeq * * P4
**
** P4 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {
  assert( pOp->p4type==P4_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3 P4 P5
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
** successors.  The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep and AggFinal
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
    assert( memIsValid(pArg) );
    apVal[i] = pArg;
    Deephemeralize(pArg);
    sqlite3VdbeMemStoreType(pArg);
    REGISTER_TRACE(pOp->p2+i, pArg);
  }

  assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
  if( pOp->p4type==P4_FUNCDEF ){
    ctx.pFunc = pOp->p4.pFunc;
    ctx.pVdbeFunc = 0;
  }else{
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.db = db;
  ctx.s.xDel = 0;
  ctx.s.zMalloc = 0;

  /* The output cell may already have a buffer allocated. Move
  ** the pointer to ctx.s so in case the user-function can use
  ** the already allocated buffer instead of allocating a new one.
  */
  sqlite3VdbeMemMove(&ctx.s, pOut);
  MemSetTypeFlag(&ctx.s, MEM_Null);

  ctx.isError = 0;
  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }

  /* If any auxiliary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
    pOp->p4type = P4_VDBEFUNC;
  }

  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
    rc = ctx.isError;
  }

  /* Copy the result of the function into register P3 */
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  sqlite3VdbeMemMove(pOut, &ctx.s);
  if( sqlite3VdbeMemTooBig(pOut) ){
    goto too_big;
  }

#if 0
  /* The app-defined function has done something that as caused this
  ** statement to expire.  (Perhaps the function called sqlite3_exec()
  ** with a CREATE TABLE statement.)
  */
  if( p->expired ) rc = SQLITE_ABORT;
#endif

  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: BitAnd P1 P2 P3 * *
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
  i64 iA;
  u64 uA;
  i64 iB;
  u8 op;

  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  pOut = &aMem[pOp->p3];
  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
    break;
  }
  iA = sqlite3VdbeIntValue(pIn2);
  iB = sqlite3VdbeIntValue(pIn1);
  op = pOp->opcode;
  if( op==OP_BitAnd ){
    iA &= iB;
  }else if( op==OP_BitOr ){
    iA |= iB;
  }else if( iB!=0 ){
    assert( op==OP_ShiftRight || op==OP_ShiftLeft );

    /* If shifting by a negative amount, shift in the other direction */
    if( iB<0 ){
      assert( OP_ShiftRight==OP_ShiftLeft+1 );
      op = 2*OP_ShiftLeft + 1 - op;
      iB = iB>(-64) ? -iB : 64;
    }

    if( iB>=64 ){
      iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
    }else{
      memcpy(&uA, &iA, sizeof(uA));
      if( op==OP_ShiftLeft ){
        uA <<= iB;
      }else{
        uA >>= iB;
        /* Sign-extend on a right shift of a negative number */
        if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
      }
      memcpy(&iA, &uA, sizeof(iA));
    }
  }
  pOut->u.i = iA;
  MemSetTypeFlag(pOut, MEM_Int);
  break;
}

/* Opcode: AddImm  P1 P2 * * *
** 
** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm: {            /* in1 */
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
  sqlite3VdbeMemIntegerify(pIn1);
  pIn1->u.i += pOp->p2;
  break;
}

/* Opcode: MustBeInt P1 P2 * * *
** 
** Force the value in register P1 to be an integer.  If the value
** in P1 is not an integer and cannot be converted into an integer
** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
*/
case OP_MustBeInt: {            /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
  if( (pIn1->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{
      pc = pOp->p2 - 1;
    }
  }else{
    MemSetTypeFlag(pIn1, MEM_Int);
  }
  break;
}

#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: RealAffinity P1 * * * *
**
** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity.  Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
case OP_RealAffinity: {                  /* in1 */
  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Int ){
    sqlite3VdbeMemRealify(pIn1);
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_CAST
/* Opcode: ToText P1 * * * *
**
** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf().  Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
  if( pIn1->flags & MEM_Null ) break;
  assert( MEM_Str==(MEM_Blob>>3) );
  pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
  applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
  rc = ExpandBlob(pIn1);
  assert( pIn1->flags & MEM_Str || db->mallocFailed );
  pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
  UPDATE_MAX_BLOBSIZE(pIn1);
  break;
}

/* Opcode: ToBlob P1 * * * *
**
** Force the value in register P1 to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Null ) break;
  if( (pIn1->flags & MEM_Blob)==0 ){
    applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
    assert( pIn1->flags & MEM_Str || db->mallocFailed );
    MemSetTypeFlag(pIn1, MEM_Blob);
  }else{
    pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
  }
  UPDATE_MAX_BLOBSIZE(pIn1);
  break;
}

/* Opcode: ToNumeric P1 * * * *
**
** Force the value in register P1 to be numeric (either an
** integer or a floating-point number.)
** If the value is text or blob, try to convert it to an using the
** equivalent of atoi() or atof() and store 0 if no such conversion 
** is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
  pIn1 = &aMem[pOp->p1];
  sqlite3VdbeMemNumerify(pIn1);
  break;
}
#endif /* SQLITE_OMIT_CAST */

/* Opcode: ToInt P1 * * * *
**
** Force the value in register P1 to be an integer.  If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_Null)==0 ){
    sqlite3VdbeMemIntegerify(pIn1);
  }
  break;
}

#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Opcode: ToReal P1 * * * *
**
** Force the value in register P1 to be a floating point number.
** If The value is currently an integer, convert it.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0.0 if no such conversion is possible.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
  if( (pIn1->flags & MEM_Null)==0 ){
    sqlite3VdbeMemRealify(pIn1);
  }
  break;
}
#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */

/* Opcode: Lt P1 P2 P3 P4 P5
**
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
** jump to address P2.  
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3.  So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL, 
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison.  If both values
** are text, then the appropriate collating function specified in
** P4 is  used to do the comparison.  If P4 is not specified then
** memcmp() is used to compare text string.  If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
** store a boolean result (either 0, or 1, or NULL) in register P2.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
** additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is false.  If either operand is NULL then the result is true.
** If neither operand is NULL the the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL.  If both operands are NULL then the result
** of comparison is true.  If either operand is NULL then the result is false.
** If neither operand is NULL the the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
*/
/* Opcode: Le P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1.  See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1.  See the Lt opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
case OP_Le:               /* same as TK_LE, jump, in1, in3 */
case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
  int res;            /* Result of the comparison of pIn1 against pIn3 */
  char affinity;      /* Affinity to use for comparison */
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
  flags3 = pIn3->flags;
  if( (pIn1->flags | pIn3->flags)&MEM_Null ){
    /* One or both operands are NULL */
    if( pOp->p5 & SQLITE_NULLEQ ){
      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
      ** or not both operands are null.
      */
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
        pc = pOp->p2-1;
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity ){
      applyAffinity(pIn1, affinity, encoding);
      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }

    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    ExpandBlob(pIn1);
    ExpandBlob(pIn3);
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
    default:       res = res>=0;     break;
  }

  if( pOp->p5 & SQLITE_STOREP2 ){
    pOut = &aMem[pOp->p2];
    memAboutToChange(p, pOut);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = res;
    REGISTER_TRACE(pOp->p2, pOut);
  }else if( res ){
    pc = pOp->p2-1;
  }

  /* Undo any changes made by applyAffinity() to the input registers. */
  pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
  pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Permutation, OP_Compare,
** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
** immediately prior to the OP_Compare.
*/
case OP_Permutation: {
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai;
  break;
}

/* Opcode: Compare P1 P2 P3 P4 *
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** P4 is a KeyInfo structure that defines collating sequences and sort
** orders for the comparison.  The permutation applies to registers
** only.  The KeyInfo elements are used sequentially.
**
** The comparison is a sort comparison, so NULLs compare equal,
** NULLs are less than numbers, numbers are less than strings,
** and strings are less than blobs.
*/
case OP_Compare: {
  int n;
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  int idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */

  n = pOp->p3;
  pKeyInfo = pOp->p4.pKeyInfo;
  assert( n>0 );
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
  if( aPermute ){
    int k, mx = 0;
    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
    assert( p1>0 && p1+mx<=p->nMem+1 );
    assert( p2>0 && p2+mx<=p->nMem+1 );
  }else{
    assert( p1>0 && p1+n<=p->nMem+1 );
    assert( p2>0 && p2+n<=p->nMem+1 );
  }
#endif /* SQLITE_DEBUG */
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;
    assert( memIsValid(&aMem[p1+idx]) );
    assert( memIsValid(&aMem[p2+idx]) );
    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
    REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
    assert( i<pKeyInfo->nField );
    pColl = pKeyInfo->aColl[i];
    bRev = pKeyInfo->aSortOrder[i];
    iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
    if( iCompare ){
      if( bRev ) iCompare = -iCompare;
      break;
    }
  }
  aPermute = 0;
  break;
}

/* Opcode: Jump P1 P2 P3 * *
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than
** equal to, or greater than the P2 vector, respectively.
*/
case OP_Jump: {             /* jump */
  if( iCompare<0 ){
    pc = pOp->p1 - 1;
  }else if( iCompare==0 ){
    pc = pOp->p2 - 1;
  }else{
    pc = pOp->p3 - 1;
  }
  break;
}

/* Opcode: And P1 P2 P3 * *
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
**
** If either P1 or P2 is 0 (false) then the result is 0 even if
** the other input is NULL.  A NULL and true or two NULLs give
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL.  A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And:              /* same as TK_AND, in1, in2, out3 */
case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
  int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
  int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */

  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Null ){
    v1 = 2;
  }else{
    v1 = sqlite3VdbeIntValue(pIn1)!=0;
  }
  pIn2 = &aMem[pOp->p2];
  if( pIn2->flags & MEM_Null ){
    v2 = 2;
  }else{
    v2 = sqlite3VdbeIntValue(pIn2)!=0;
  }
  if( pOp->opcode==OP_And ){
    static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
    v1 = and_logic[v1*3+v2];
  }else{
    static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
    v1 = or_logic[v1*3+v2];
  }
  pOut = &aMem[pOp->p3];
  if( v1==2 ){
    MemSetTypeFlag(pOut, MEM_Null);
  }else{
    pOut->u.i = v1;
    MemSetTypeFlag(pOut, MEM_Int);
  }
  break;
}

/* Opcode: Not P1 P2 * * *
**
** Interpret the value in register P1 as a boolean value.  Store the
** boolean complement in register P2.  If the value in register P1 is 
** NULL, then a NULL is stored in P2.
*/
case OP_Not: {                /* same as TK_NOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
  }else{
    sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: BitNot P1 P2 * * *
**
** Interpret the content of register P1 as an integer.  Store the
** ones-complement of the P1 value into register P2.  If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
  }else{
    sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true.  The value is
** is considered true if it is numeric and non-zero.  If the value
** in P1 is NULL then take the jump if P3 is true.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False.  The value is
** is considered true if it has a numeric value of zero.  If the value
** in P1 is NULL then take the jump if P3 is true.
*/
case OP_If:                 /* jump, in1 */
case OP_IfNot: {            /* jump, in1 */
  int c;
  pIn1 = &aMem[pOp->p1];
  if( pIn1->flags & MEM_Null ){
    c = pOp->p3;
  }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
    c = sqlite3VdbeIntValue(pIn1)!=0;
#else
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  if( c ){
    pc = pOp->p2-1;
  }
  break;
}

/* Opcode: IsNull P1 P2 * * *
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_Null)!=0 ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: NotNull P1 P2 * * *
**
** Jump to P2 if the value in register P1 is not NULL.  
*/
case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_Null)==0 ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Column P1 P2 P3 P4 P5
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
** information about the format of the data.)  Extract the P2-th column
** from this record.  If there are less that (P2+1) 
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
*/
case OP_Column: {
  u32 payloadSize;   /* Number of bytes in the record */
  i64 payloadSize64; /* Number of bytes in the record */
  int p1;            /* P1 value of the opcode */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */
  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  MemSetTypeFlag(pDest, MEM_Null);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables
  ** If the record is stored in a cursor, the complete record text
  ** might be available in the  pC->aRow cache.  Or it might not be.
  ** If the data is unavailable,  zRec is set to NULL.
  **
  ** We also compute the number of columns in the record.  For cursors,
  ** the number of columns is stored in the VdbeCursor.nField element.
  */
  pC = p->apCsr[p1];
  assert( pC!=0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 );
#endif
  pCrsr = pC->pCursor;
  if( pCrsr!=0 ){
    /* The record is stored in a B-Tree */
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheStatus==p->cacheCtr ){
      payloadSize = pC->payloadSize;
      zRec = (char*)pC->aRow;
    }else if( pC->isIndex ){
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
      /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
      ** payload size, so it is impossible for payloadSize64 to be
      ** larger than 32 bits. */
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( pC->pseudoTableReg>0 ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL */
  if( payloadSize==0 ){
    assert( pDest->flags&MEM_Null );
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  nField = pC->nField;
  assert( p2<nField );

  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  aType = pC->aType;
  if( pC->cacheStatus==p->cacheCtr ){
    aOffset = pC->aOffset;
  }else{
    assert(aType);
    avail = 0;
    pC->aOffset = aOffset = &aType[nField];
    pC->payloadSize = payloadSize;
    pC->cacheStatus = p->cacheCtr;

    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;
    }else{
      if( pC->isIndex ){
        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
      }else{
        zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
      }
      /* If KeyFetch()/DataFetch() managed to get the entire payload,
      ** save the payload in the pC->aRow cache.  That will save us from
      ** having to make additional calls to fetch the content portion of
      ** the record.
      */
      assert( avail>=0 );
      if( payloadSize <= (u32)avail ){
        zRec = zData;
        pC->aRow = (u8*)zData;
      }else{
        pC->aRow = 0;
      }
    }
    /* The following assert is true in all cases accept when
    ** the database file has been corrupted externally.
    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
    szHdr = getVarint32((u8*)zData, offset);

    /* Make sure a corrupt database has not given us an oversize header.
    ** Do this now to avoid an oversize memory allocation.
    **
    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
    ** types use so much data space that there can only be 4096 and 32 of
    ** them, respectively.  So the maximum header length results from a
    ** 3-byte type for each of the maximum of 32768 columns plus three
    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
    */
    if( offset > 98307 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }

    /* Compute in len the number of bytes of data we need to read in order
    ** to get nField type values.  offset is an upper bound on this.  But
    ** nField might be significantly less than the true number of columns
    ** in the table, and in that case, 5*nField+3 might be smaller than offset.
    ** We want to minimize len in order to limit the size of the memory
    ** allocation, especially if a corrupt database file has caused offset
    ** to be oversized. Offset is limited to 98307 above.  But 98307 might
    ** still exceed Robson memory allocation limits on some configurations.
    ** On systems that cannot tolerate large memory allocations, nField*5+3
    ** will likely be much smaller since nField will likely be less than
    ** 20 or so.  This insures that Robson memory allocation limits are
    ** not exceeded even for corrupt database files.
    */
    len = nField*5 + 3;
    if( len > (int)offset ) len = (int)offset;

    /* The KeyFetch() or DataFetch() above are fast and will get the entire
    ** record header in most cases.  But they will fail to get the complete
    ** record header if the record header does not fit on a single page
    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
    ** acquire the complete header text.
    */
    if( !zRec && avail<len ){
      sMem.flags = 0;
      sMem.db = 0;
      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    zEndHdr = (u8 *)&zData[len];
    zIdx = (u8 *)&zData[szHdr];

    /* Scan the header and use it to fill in the aType[] and aOffset[]
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;
        zIdx += getVarint32(zIdx, aType[i]);
        szField = sqlite3VdbeSerialTypeLen(aType[i]);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this
        ** record than SetNumColumns indicated there are columns in the
        ** table. Set the offset for any extra columns not present in
        ** the record to 0. This tells code below to store a NULL
        ** instead of deserializing a value from the record.
        */
        aOffset[i] = 0;
      }
    }
    sqlite3VdbeMemRelease(&sMem);
    sMem.flags = MEM_Null;

    /* If we have read more header data than was contained in the header,
    ** or if the end of the last field appears to be past the end of the
    ** record, or if the end of the last field appears to be before the end
    ** of the record (when all fields present), then we must be dealing 
    ** with a corrupt database.
    */
    if( (zIdx > zEndHdr) || (offset > payloadSize)
         || (zIdx==zEndHdr && offset!=payloadSize) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 
  ** deserialize the value from the record. If aOffset[p2] is zero,
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      sqlite3VdbeMemReleaseExternal(pDest);
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      assert( pDest->flags&MEM_Null );
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.
  */
  if( sMem.zMalloc ){
    assert( sMem.z==sMem.zMalloc );
    assert( !(pDest->flags & MEM_Dyn) );
    assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
    pDest->flags &= ~(MEM_Ephem|MEM_Static);
    pDest->flags |= MEM_Term;
    pDest->z = sMem.z;
    pDest->zMalloc = sMem.zMalloc;
  }

  rc = sqlite3VdbeMemMakeWriteable(pDest);

op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
case OP_Affinity: {
  const char *zAffinity;   /* The affinity to be applied */
  char cAff;               /* A single character of affinity */

  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}

/* Opcode: MakeRecord P1 P2 P3 P4 *
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index.  The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  Mem *pRec;             /* The new record */
  u64 nData;             /* Number of bytes of data space */
  int nHdr;              /* Number of bytes of header space */
  i64 nByte;             /* Data space required for this record */
  int nZero;             /* Number of zero bytes at the end of the record */
  int nVarint;           /* Number of bytes in a varint */
  u32 serial_type;       /* Type field */
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] */
  int len;               /* Length of a field */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  ** and so froth.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pLast; pRec++){
    assert( memIsValid(pRec) );
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      sqlite3VdbeMemExpandBlob(pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    nData += len;
    nHdr += sqlite3VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.
      ** We do not allow blobs with a prefix and a zero-filled tail. */
      nZero += pRec->u.nZero;
    }else if( len ){
      nZero = 0;
    }
  }

  /* Add the initial header varint and total the size */
  nHdr += nVarint = sqlite3VarintLen(nHdr);
  if( nVarint<sqlite3VarintLen(nHdr) ){
    nHdr++;
  }
  nByte = nHdr+nData-nZero;
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemGrow() could clobber the value before it is used).
  */
  if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  for(pRec=pData0; pRec<=pLast; pRec++){
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Count P1 P2 * * *
**
** Store the number of entries (an integer value) in the table or index 
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( pCrsr ){
    rc = sqlite3BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;
  }
  pOut->u.i = nEntry;
  break;
}
#endif

/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
  int p1;                         /* Value of P1 operand */
  char *zName;                    /* Name of savepoint */
  int nName;
  Savepoint *pNew;
  Savepoint *pSavepoint;
  Savepoint *pTmp;
  int iSavepoint;
  int ii;

  p1 = pOp->p1;
  zName = pOp->p4.z;

  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);

      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){
          db->autoCommit = 0;
          db->isTransactionSavepoint = 1;
        }else{
          db->nSavepoint++;
        }
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
        pNew->nDeferredCons = db->nDeferredCons;
      }
    }
  }else{
    iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint = db->pSavepoint; 
      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
      pSavepoint = pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( 
        db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) 
    ){
      /* It is not possible to release (commit) a savepoint if there are 
      ** active write statements. It is not possible to rollback a savepoint
      ** if there are any active statements at all.
      */
      sqlite3SetString(&p->zErrMsg, db, 
        "cannot %s savepoint - SQL statements in progress",
        (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
      );
      rc = SQLITE_BUSY;
    }else{

      /* Determine whether or not this is a transaction savepoint. If so,
      ** and this is a RELEASE command, then the current transaction 
      ** is committed. 
      */
      int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
      if( isTransaction && p1==SAVEPOINT_RELEASE ){
        if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
          goto vdbe_return;
        }
        db->autoCommit = 1;
        if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
          p->pc = pc;
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        iSavepoint = db->nSavepoint - iSavepoint - 1;
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetInternalSchema(db, -1);
          db->flags = (db->flags | SQLITE_InternChanges);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=pSavepoint ){
        pTmp = db->pSavepoint;
        db->pSavepoint = pTmp->pNext;
        sqlite3DbFree(db, pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on 
      ** too. If it is a ROLLBACK TO, then set the number of deferred 
      ** constraint violations present in the database to the value stored
      ** when the savepoint was created.  */
      if( p1==SAVEPOINT_RELEASE ){
        assert( pSavepoint==db->pSavepoint );
        db->pSavepoint = pSavepoint->pNext;
        sqlite3DbFree(db, pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }else{
        db->nDeferredCons = pSavepoint->nDeferredCons;
      }
    }
  }

  break;
}

/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit;
  int iRollback;
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first. 
    */
    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( desiredAutoCommit!=db->autoCommit ){
    if( iRollback ){
      assert( desiredAutoCommit==1 );
      sqlite3RollbackAll(db);
      db->autoCommit = 1;
    }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
      goto vdbe_return;
    }else{
      db->autoCommit = (u8)desiredAutoCommit;
      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
        p->pc = pc;
        db->autoCommit = (u8)(1-desiredAutoCommit);
        p->rc = rc = SQLITE_BUSY;
        goto vdbe_return;
      }
    }
    assert( db->nStatement==0 );
    sqlite3CloseSavepoints(db);
    if( p->rc==SQLITE_OK ){
      rc = SQLITE_DONE;
    }else{
      rc = SQLITE_ERROR;
    }
    goto vdbe_return;
  }else{
    sqlite3SetString(&p->zErrMsg, db,
        (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
        (iRollback)?"cannot rollback - no transaction is active":
                   "cannot commit - no transaction is active"));
         
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: Transaction P1 P2 * * *
**
** Begin a transaction.  The transaction ends when a Commit or Rollback
** opcode is encountered.  Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started.  Index 0 is the main database file and index 1 is the
** file used for temporary tables.  Indices of 2 or more are used for
** attached databases.
**
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
** obtained on the database file when a write-transaction is started.  No
** other process can start another write transaction while this transaction is
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the affects of this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }

    if( pOp->p2 && p->usesStmtJournal 
     && (db->autoCommit==0 || db->activeVdbeCnt>1) 
    ){
      assert( sqlite3BtreeIsInTrans(pBt) );
      if( p->iStatement==0 ){
        assert( db->nStatement>=0 && db->nSavepoint>=0 );
        db->nStatement++; 
        p->iStatement = db->nSavepoint + db->nStatement;
      }
      rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);

      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;
    }
  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version.  P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;

  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );

  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite3VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = (int)pIn3->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = (u8)pIn3->u.i;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite3ExpirePreparedStatements(db);
    p->expired = 0;
  }
  break;
}

/* Opcode: VerifyCookie P1 P2 P3 * *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2 and that the
** generation counter on the local schema parse equals P3.
**
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
  int iMeta;
  int iGen;
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
  if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
    /* If the schema-cookie from the database file matches the cookie 
    ** stored with the in-memory representation of the schema, do
    ** not reload the schema from the database file.
    **
    ** If virtual-tables are in use, this is not just an optimization.
    ** Often, v-tables store their data in other SQLite tables, which
    ** are queried from within xNext() and other v-table methods using
    ** prepared queries. If such a query is out-of-date, we do not want to
    ** discard the database schema, as the user code implementing the
    ** v-table would have to be ready for the sqlite3_vtab structure itself
    ** to be invalidated whenever sqlite3_step() is called from within 
    ** a v-table method.
    */
    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
      sqlite3ResetInternalSchema(db, pOp->p1);
    }

    p->expired = 1;
    rc = SQLITE_SCHEMA;
  }
  break;
}

/* Opcode: OpenRead P1 P2 P3 P4 P5
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file.  The database file is determined by P3. 
** P3==0 means the main database, P3==1 means the database used for 
** temporary tables, and P3>1 means used the corresponding attached
** database.  Give the new cursor an identifier of P1.  The P1
** values need not be contiguous but all P1 values should be small integers.
** It is an error for P1 to be negative.
**
** If P5!=0 then use the content of register P2 as the root page, not
** the value of P2 itself.
**
** There will be a read lock on the database whenever there is an
** open cursor.  If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction.  A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database.  The read lock is
** released when all cursors are closed.  If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
** structure, then said structure defines the content and collating 
** sequence of the index being opened. Otherwise, if P4 is an integer 
** value, it is set to the number of columns in the table.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2.  Or if P5!=0 use the content of register P2 to find the
** root page.
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
** structure, then said structure defines the content and collating 
** sequence of the index being opened. Otherwise, if P4 is an integer 
** value, it is set to the number of columns in the table, or to the
** largest index of any column of the table that is actually used.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 ){
    assert( p2>0 );
    assert( p2<=p->nMem );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    p2 = (int)pIn2->u.i;
    /* The p2 value always comes from a prior OP_CreateTable opcode and
    ** that opcode will always set the p2 value to 2 or more or else fail.
    ** If there were a failure, the prepared statement would have halted
    ** before reaching this instruction. */
    if( NEVER(p2<2) ) {
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
  }
  if( pOp->p4type==P4_KEYINFO ){
    pKeyInfo = pOp->p4.pKeyInfo;
    pKeyInfo->enc = ENC(p->db);
    nField = pKeyInfo->nField+1;
  }else if( pOp->p4type==P4_INT32 ){
    nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only values that
  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 
  ** SQLITE_EMPTY is only returned when attempting to open the table
  ** rooted at page 1 of a zero-byte database.  */
  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
  if( rc==SQLITE_EMPTY ){
    pCur->pCursor = 0;
    rc = SQLITE_OK;
  }

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 *
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The ephemeral
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the ephemeral table.
** The cursor points to a BTree table if P4==0 and to a BTree index
** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
/* Opcode: OpenAutoindex P1 P2 * P4 *
**
** This opcode works the same as OP_OpenEphemeral.  It has a
** different name to distinguish its use.  Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
case OP_OpenAutoindex: 
case OP_OpenEphemeral: {
  VdbeCursor *pCx;
  static const int vfsFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeOpen(0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
        pCx->pKeyInfo = pOp->p4.pKeyInfo;
        pCx->pKeyInfo->enc = ENC(p->db);
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  pCx->isIndex = !pCx->isTable;
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data.  The content of that one row in the content of memory
** register P2.  In other words, cursor P1 becomes an alias for the 
** MEM_Blob content contained in register P2.
**
** A pseudo-table created by this opcode is used to hold a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode.  The OP_Column opcode
** is the only cursor opcode that works with a pseudo-table.
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTableReg = pOp->p2;
  pCx->isTable = 1;
  pCx->isIndex = 0;
  break;
}

/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
  p->apCsr[pOp->p1] = 0;
  break;
}

/* Opcode: SeekGe P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as the key.  If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGt P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than the key value. If there are no records greater than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLt P1 P2 P3 P4 * 
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the largest entry that 
** is less than the key value. If there are no records less than 
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLe P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as a key. If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that it points to the largest entry that 
** is less than or equal to the key value. If there are no records 
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;
  i64 iKey;      /* The rowid we are to seek to */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( pC->pCursor!=0 ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];
      applyNumericAffinity(pIn3);
      iKey = sqlite3VdbeIntValue(pIn3);
      pC->rowidIsValid = 0;

      /* If the P3 value could not be converted into an integer without
      ** loss of information, then special processing is required... */
      if( (pIn3->flags & MEM_Int)==0 ){
        if( (pIn3->flags & MEM_Real)==0 ){
          /* If the P3 value cannot be converted into any kind of a number,
          ** then the seek is not possible, so jump to P2 */
          pc = pOp->p2 - 1;
          break;
        }
        /* If we reach this point, then the P3 value must be a floating
        ** point number. */
        assert( (pIn3->flags & MEM_Real)!=0 );

        if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
          /* The P3 value is too large in magnitude to be expressed as an
          ** integer. */
          res = 1;
          if( pIn3->r<0 ){
            if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
              rc = sqlite3BtreeFirst(pC->pCursor, &res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }else{
            if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
              rc = sqlite3BtreeLast(pC->pCursor, &res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }
          if( res ){
            pc = pOp->p2 - 1;
          }
          break;
        }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
          /* Use the ceiling() function to convert real->int */
          if( pIn3->r > (double)iKey ) iKey++;
        }else{
          /* Use the floor() function to convert real->int */
          assert( oc==OP_SeekLe || oc==OP_SeekGt );
          if( pIn3->r < (double)iKey ) iKey--;
        }
      } 
      rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( res==0 ){
        pC->rowidIsValid = 1;
        pC->lastRowid = iKey;
      }
    }else{
      nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( nField>0 );
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)nField;

      /* The next line of code computes as follows, only faster:
      **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
      **     r.flags = UNPACKED_INCRKEY;
      **   }else{
      **     r.flags = 0;
      **   }
      */
      r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
      assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
      assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
      assert( oc!=OP_SeekGe || r.flags==0 );
      assert( oc!=OP_SeekLt || r.flags==0 );

      r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      ExpandBlob(r.aMem);
      rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->rowidIsValid = 0;
    }
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
    if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
      if( res<0 || (res==0 && oc==OP_SeekGt) ){
        rc = sqlite3BtreeNext(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        res = 0;
      }
    }else{
      assert( oc==OP_SeekLt || oc==OP_SeekLe );
      if( res>0 || (res==0 && oc==OP_SeekLt) ){
        rc = sqlite3BtreePrevious(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        /* res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        res = sqlite3BtreeEof(pC->pCursor);
      }
    }
    assert( pOp->p2>0 );
    if( res ){
      pc = pOp->p2 - 1;
    }
  }else{
    /* This happens when attempting to open the sqlite3_master table
    ** for read access returns SQLITE_EMPTY. In this case always
    ** take the jump (since there are no records in the table).
    */
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( ALWAYS(pC->pCursor!=0) ){
    assert( pC->isTable );
    pC->nullRow = 0;
    pIn2 = &aMem[pOp->p2];
    pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 1;
  }
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
** 
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
** does contain an entry whose prefix matches the P3/P4 record then control
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  UnpackedRecord *pIdxKey;
  UnpackedRecord r;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

#ifdef SQLITE_TEST
  sqlite3_found_count++;
#endif

  alreadyExists = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pIn3 = &aMem[pOp->p3];
  if( ALWAYS(pC->pCursor!=0) ){

    assert( pC->isTable==0 );
    if( pOp->p4.i>0 ){
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)pOp->p4.i;
      r.aMem = pIn3;
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      r.flags = UNPACKED_PREFIX_MATCH;
      pIdxKey = &r;
    }else{
      assert( pIn3->flags & MEM_Blob );
      assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
      pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
                                        aTempRec, sizeof(aTempRec));
      if( pIdxKey==0 ){
        goto no_mem;
      }
      pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
    if( pOp->p4.i==0 ){
      sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
    }
    if( rc!=SQLITE_OK ){
      break;
    }
    alreadyExists = (res==0);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsUnique P1 P2 P3 P4 *
**
** Cursor P1 is open on an index b-tree - that is to say, a btree which
** no data and where the key are records generated by OP_MakeRecord with
** the list field being the integer ROWID of the entry that the index
** entry refers to.
**
** The P3 register contains an integer record number. Call this record 
** number R. Register P4 is the first in a set of N contiguous registers
** that make up an unpacked index key that can be used with cursor P1.
** The value of N can be inferred from the cursor. N includes the rowid
** value appended to the end of the index record. This rowid value may
** or may not be the same as R.
**
** If any of the N registers beginning with register P4 contains a NULL
** value, jump immediately to P2.
**
** Otherwise, this instruction checks if cursor P1 contains an entry
** where the first (N-1) fields match but the rowid value at the end
** of the index entry is not R. If there is no such entry, control jumps
** to instruction P2. Otherwise, the rowid of the conflicting index
** entry is copied to register P3 and control falls through to the next
** instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMx;
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
  pCrsr = pCx->pCursor;

  /* If any of the values are NULL, take the jump. */
  nField = pCx->pKeyInfo->nField;
  for(ii=0; ii<nField; ii++){
    if( aMx[ii].flags & MEM_Null ){
      pc = pOp->p2 - 1;
      pCrsr = 0;
      break;
    }
  }
  assert( (aMx[nField].flags & MEM_Null)==0 );

  if( pCrsr!=0 ){
    /* Populate the index search key. */
    r.pKeyInfo = pCx->pKeyInfo;
    r.nField = nField + 1;
    r.flags = UNPACKED_PREFIX_SEARCH;
    r.aMem = aMx;
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif

    /* Extract the value of R from register P3. */
    sqlite3VdbeMemIntegerify(pIn3);
    R = pIn3->u.i;

    /* Search the B-Tree index. If no conflicting record is found, jump
    ** to P2. Otherwise, copy the rowid of the conflicting record to
    ** register P3 and fall through to the next instruction.  */
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
    if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
      pc = pOp->p2 - 1;
    }else{
      pIn3->u.i = r.rowid;
    }
  }
  break;
}

/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as a integer key.  If a record 
** with that key does not exist in table of P1, then jump to P2. 
** If the record does exist, then fall through.  The cursor is left 
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  u64 iKey;

  pIn3 = &aMem[pOp->p3];
  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  if( pCrsr!=0 ){
    res = 0;
    iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->deferredMoveto = 0;
    if( res!=0 ){
      pc = pOp->p2 - 1;
      assert( pC->rowidIsValid==0 );
    }
    pC->seekResult = res;
  }else{
    /* This happens when an attempt to open a read cursor on the 
    ** sqlite_master table returns SQLITE_EMPTY.
    */
    pc = pOp->p2 - 1;
    assert( pC->rowidIsValid==0 );
    pC->seekResult = 0;
  }
  break;
}

/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2-prerelease */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
  break;
}


/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum, 
** a SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
  int res;               /* Result of an sqlite3BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( NEVER(pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 100 times.
    */
    assert( pC->isTable );

#ifdef SQLITE_32BIT_ROWID
#   define MAX_ROWID 0x7fffffff
#else
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !pC->useRandomRowid ){
      v = sqlite3BtreeGetCachedRowid(pC->pCursor);
      if( v==0 ){
        rc = sqlite3BtreeLast(pC->pCursor, &res);
        if( rc!=SQLITE_OK ){
          goto abort_due_to_error;
        }
        if( res ){
          v = 1;   /* IMP: R-61914-48074 */
        }else{
          assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
          rc = sqlite3BtreeKeySize(pC->pCursor, &v);
          assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
          if( v==MAX_ROWID ){
            pC->useRandomRowid = 1;
          }else{
            v++;   /* IMP: R-29538-34987 */
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){
        /* Assert that P3 is a valid memory cell. */
        assert( pOp->p3>0 );
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=p->nMem );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
          rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
          goto abort_due_to_error;
        }
        if( v<pMem->u.i+1 ){
          v = pMem->u.i + 1;
        }
        pMem->u.i = v;
      }
#endif

      sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
    }
    if( pC->useRandomRowid ){
      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
      ** largest possible integer (9223372036854775807) then the database
      ** engine starts picking positive candidate ROWIDs at random until
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      /* on the first attempt, simply do one more than previous */
      v = db->lastRowid;
      v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
      v++; /* ensure non-zero */
      cnt = 0;
      while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100)){
        /* collision - try another random rowid */
        sqlite3_randomness(sizeof(v), &v);
        if( cnt<5 ){
          /* try "small" random rowids for the initial attempts */
          v &= 0xffffff;
        }else{
          v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
        }
        v++; /* ensure non-zero */
      }
      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }
      assert( v>0 );  /* EV: R-40812-03570 */
    }
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pOut->u.i = v;
  break;
}

/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value MEM_Blob stored in register
** number P2. The key is stored in register P3. The key must
** be a MEM_Int.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
** the last seek operation (OP_NotExists) was a success, then this
** operation will not attempt to find the appropriate row before doing
** the insert but will instead overwrite the row that the cursor is
** currently pointing to.  Presumably, the prior OP_NotExists opcode
** has already positioned the cursor correctly.  This is an optimization
** that boosts performance by avoiding redundant seeks.
**
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
** is part of an INSERT operation.  The difference is only important to
** the update hook.
**
** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook 
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral.  If the cursor is changed, the
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
*/
case OP_Insert: 
case OP_InsertInt: {
  Mem *pData;       /* MEM cell holding data for the record to be inserted */
  Mem *pKey;        /* MEM cell holding key  for the record */
  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
  VdbeCursor *pC;   /* Cursor to table into which insert is written */
  int nZero;        /* Number of zero-bytes to append */
  int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
  const char *zDb;  /* database name - used by the update hook */
  const char *zTbl; /* Table name - used by the opdate hook */
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */

  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
    REGISTER_TRACE(pOp->p3, pKey);
    iKey = pKey->u.i;
  }else{
    assert( pOp->opcode==OP_InsertInt );
    iKey = pOp->p3;
  }

  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
  if( pData->flags & MEM_Null ){
    pData->z = 0;
    pData->n = 0;
  }else{
    assert( pData->flags & (MEM_Blob|MEM_Str) );
  }
  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
  if( pData->flags & MEM_Zero ){
    nZero = pData->u.nZero;
  }else{
    nZero = 0;
  }
  sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          pOp->p5 & OPFLAG_APPEND, seekResult
  );
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  break;
}

/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  i64 iKey;
  VdbeCursor *pC;

  iKey = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set iKey to the rowid of the
  ** row being deleted.
  */
  if( db->xUpdateCallback && pOp->p4.z ){
    assert( pC->isTable );
    assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
    iKey = pC->lastRowid;
  }

  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
  ** OP_Column on the same table without any intervening operations that
  ** might move or invalidate the cursor.  Hence cursor pC is always pointing
  ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
  ** to guard against future changes to the code generator.
  **/
  assert( pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
  rc = sqlite3BtreeDelete(pC->pCursor);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
/* Opcode: ResetCount * * * * *
**
** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/
case OP_ResetCount: {
  sqlite3VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.  
** The key is copied onto the P3 register exactly as 
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;
  i64 n64;

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->isTable || pOp->opcode==OP_RowKey );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
  ** a no-op and can never fail.  But we leave it in place as a safety.
  */
  assert( pC->deferredMoveto==0 );
  rc = sqlite3VdbeCursorMoveto(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( pC->isIndex ){
    assert( !pC->isTable );
    rc = sqlite3BtreeKeySize(pCrsr, &n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    n = (u32)n64;
  }else{
    rc = sqlite3BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite3VdbeMemGrow(pOut, n, 0) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isIndex ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
    rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    importVtabErrMsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
    }else{
      rc = sqlite3BtreeKeySize(pC->pCursor, &v);
      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
    }
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( pCrsr==0 ){
    res = 1;
  }else{
    rc = sqlite3BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;
  pC->cacheStatus = CACHE_STALE;
  if( pOp->p2>0 && res ){
    pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: Sort P1 P2 * * *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
**
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  res = 1;
  if( (pCrsr = pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * * P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  pCrsr = pC->pCursor;
  if( pCrsr==0 ){
    pC->nullRow = 1;
    break;
  }
  res = 1;
  assert( pC->deferredMoveto==0 );
  rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
                              sqlite3BtreePrevious(pCrsr, &res);
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
    sqlite3_search_count++;
#endif
  }
  pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 P3 * P5
**
** Register P2 holds a SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
      );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;
    r.flags = 0;
    r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
    if( rc==SQLITE_OK && res==0 ){
      rc = sqlite3BtreeDelete(pCrsr);
    }
    assert( pC->deferredMoveto==0 );
    pC->cacheStatus = CACHE_STALE;
  }
  break;
}

/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  pOut->flags = MEM_Null;
  if( ALWAYS(pCrsr!=0) ){
    rc = sqlite3VdbeCursorMoveto(pC);
    if( NEVER(rc) ) goto abort_due_to_error;
    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( !pC->nullRow ){
      rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pOut->u.i = rowid;
      pOut->flags = MEM_Int;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2.  Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon 
** prior to the comparison.  This make the opcode work like IdxGT except
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump */
case OP_IdxGE: {        /* jump */
  VdbeCursor *pC;
  int res;
  UnpackedRecord r;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isOrdered );
  if( ALWAYS(pC->pCursor!=0) ){
    assert( pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
    }else{
      r.flags = UNPACKED_IGNORE_ROWID;
    }
    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else{
      assert( pOp->opcode==OP_IdxGE );
      res++;
    }
    if( res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  break;
}

/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0.  If
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database.  The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2.  If no page 
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
      sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
      /* All OP_Destroy operations occur on the same btree */
      assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
      resetSchemaOnFault = iDb+1;
    }
#endif
  }
  break;
}

/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1.  But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If the P3 value is non-zero, then the table referred to must be an
** intkey table (an SQL table, not an index). In this case the row change 
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;
    }
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into
** register P2
**
** The difference between a table and an index is this:  A table must
** have a 4-byte integer key and can have arbitrary data.  An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex P1 P2 * * *
**
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;
  }else{
    flags = BTREE_BLOBKEY;
  }
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
  pOut->u.i = pgno;
  break;
}

/* Opcode: ParseSchema P1 * * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4. 
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;

  /* Any prepared statement that invokes this opcode will hold mutexes
  ** on every btree.  This is a prerequisite for invoking 
  ** sqlite3InitCallback().
  */
#ifdef SQLITE_DEBUG
  for(iDb=0; iDb<db->nDb; iDb++){
    assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
  }
#endif

  iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
  /* Used to be a conditional */ {
    zMaster = SCHEMA_TABLE(iDb);
    initData.db = db;
    initData.iDb = pOp->p1;
    initData.pzErrMsg = &p->zErrMsg;
    zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
       db->aDb[iDb].zName, zMaster, pOp->p4.z);
    if( zSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      assert( db->init.busy==0 );
      db->init.busy = 1;
      initData.rc = SQLITE_OK;
      assert( !db->mallocFailed );
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
      if( rc==SQLITE_OK ) rc = initData.rc;
      sqlite3DbFree(db, zSql);
      db->init.busy = 0;
    }
  }
  if( rc==SQLITE_NOMEM ){
    goto no_mem;
  }
  break;  
}

#if !defined(SQLITE_OMIT_ANALYZE)
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table.  This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  rc = sqlite3AnalysisLoad(db, pOp->p1);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) */

/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 * P5
**
** Do an analysis of the currently open database.  Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are 
** seen.  Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integer
** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
** total.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */
  
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
  }
  aRoot[j] = 0;
  assert( pOp->p5<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
                                 (int)pnErr->u.i, &nErr);
  sqlite3DbFree(db, aRoot);
  pnErr->u.i -= nErr;
  sqlite3VdbeMemSetNull(pIn1);
  if( nErr==0 ){
    assert( z==0 );
  }else if( z==0 ){
    goto no_mem;
  }else{
    sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
  }
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite3VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: {       /* in1, in2 */
  pIn1 = &aMem[pOp->p1];
  pIn2 = &aMem[pOp->p2];
  assert( (pIn2->flags & MEM_Int)!=0 );
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }
  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
  break;
}

/* Opcode: RowSetRead P1 P2 P3 * *
**
** Extract the smallest value from boolean index P1 and put that value into
** register P3.  Or, if boolean index P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: {       /* jump, in1, out3 */
  i64 val;
  CHECK_FOR_INTERRUPT;
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_RowSet)==0 
   || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
  ){
    /* The boolean index is empty */
    sqlite3VdbeMemSetNull(pIn1);
    pc = pOp->p2 - 1;
  }else{
    /* A value was pulled from the index */
    sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
  }
  break;
}

/* Opcode: RowSetTest P1 P2 P3 P4
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
** integer in P3 into the RowSet and continue on to the
** next opcode.
**
** The RowSet object is optimized for the case where successive sets
** of integers, where each set contains no duplicates. Each set
** of values is identified by a unique P4 value. The first set
** must have P4==0, the final set P4=-1.  P4 must be either -1 or
** non-negative.  For non-negative values of P4 only the lower 4
** bits are significant.
**
** This allows optimizations: (a) when P4==0 there is no need to test
** the rowset object for P3, as it is guaranteed not to contain it,
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */
  int iSet;
  int exists;

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  iSet = pOp->p4.i;
  assert( pIn3->flags&MEM_Int );

  /* If there is anything other than a rowset object in memory cell P1,
  ** delete it now and initialize P1 with an empty rowset
  */
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }

  assert( pOp->p4type==P4_INT32 );
  assert( iSet==-1 || iSet>=0 );
  if( iSet ){
    exists = sqlite3RowSetTest(pIn1->u.pRowSet, 
                               (u8)(iSet>=0 ? iSet & 0xf : 0xff),
                               pIn3->u.i);
    if( exists ){
      pc = pOp->p2 - 1;
      break;
    }
  }
  if( iSet>=0 ){
    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
  }
  break;
}


#ifndef SQLITE_OMIT_TRIGGER

/* Opcode: Program P1 P2 P3 P4 *
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 
**
** P1 contains the address of the memory cell that contains the first memory 
** cell in an array of values used as arguments to the sub-program. P2 
** contains the address to jump to if the sub-program throws an IGNORE 
** exception using the RAISE() function. Register P3 contains the address 
** of a memory cell in this (the parent) VM that is used to allocate the 
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
*/
case OP_Program: {        /* jump */
  int nMem;               /* Number of memory registers for sub-program */
  int nByte;              /* Bytes of runtime space required for sub-program */
  Mem *pRt;               /* Register to allocate runtime space */
  Mem *pMem;              /* Used to iterate through memory cells */
  Mem *pEnd;              /* Last memory cell in new array */
  VdbeFrame *pFrame;      /* New vdbe frame to execute in */
  SubProgram *pProgram;   /* Sub-program to execute */
  void *t;                /* Token identifying trigger */

  pProgram = pOp->p4.pProgram;
  pRt = &aMem[pOp->p3];
  assert( memIsValid(pRt) );
  assert( pProgram->nOp>0 );
  
  /* If the p5 flag is clear, then recursive invocation of triggers is 
  ** disabled for backwards compatibility (p5 is set if this sub-program
  ** is really a trigger, not a foreign key action, and the flag set
  ** and cleared by the "PRAGMA recursive_triggers" command is clear).
  ** 
  ** It is recursive invocation of triggers, at the SQL level, that is 
  ** disabled. In some cases a single trigger may generate more than one 
  ** SubProgram (if the trigger may be executed with more than one different 
  ** ON CONFLICT algorithm). SubProgram structures associated with a
  ** single trigger all have the same value for the SubProgram.token 
  ** variable.  */
  if( pOp->p5 ){
    t = pProgram->token;
    for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
    if( pFrame ) break;
  }

  if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
    rc = SQLITE_ERROR;
    sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
    break;
  }

  /* Register pRt is used to store the memory required to save the state
  ** of the current program, and the memory required at runtime to execute
  ** the trigger program. If this trigger has been fired before, then pRt 
  ** is already allocated. Otherwise, it must be initialized.  */
  if( (pRt->flags&MEM_Frame)==0 ){
    /* SubProgram.nMem is set to the number of memory cells used by the 
    ** program stored in SubProgram.aOp. As well as these, one memory
    ** cell is required for each cursor used by the program. Set local
    ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
    */
    nMem = pProgram->nMem + pProgram->nCsr;
    nByte = ROUND8(sizeof(VdbeFrame))
              + nMem * sizeof(Mem)
              + pProgram->nCsr * sizeof(VdbeCursor *);
    pFrame = sqlite3DbMallocZero(db, nByte);
    if( !pFrame ){
      goto no_mem;
    }
    sqlite3VdbeMemRelease(pRt);
    pRt->flags = MEM_Frame;
    pRt->u.pFrame = pFrame;

    pFrame->v = p;
    pFrame->nChildMem = nMem;
    pFrame->nChildCsr = pProgram->nCsr;
    pFrame->pc = pc;
    pFrame->aMem = p->aMem;
    pFrame->nMem = p->nMem;
    pFrame->apCsr = p->apCsr;
    pFrame->nCursor = p->nCursor;
    pFrame->aOp = p->aOp;
    pFrame->nOp = p->nOp;
    pFrame->token = pProgram->token;

    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
      pMem->flags = MEM_Null;
      pMem->db = db;
    }
  }else{
    pFrame = pRt->u.pFrame;
    assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
    assert( pProgram->nCsr==pFrame->nChildCsr );
    assert( pc==pFrame->pc );
  }

  p->nFrame++;
  pFrame->pParent = p->pFrame;
  pFrame->lastRowid = db->lastRowid;
  pFrame->nChange = p->nChange;
  p->nChange = 0;
  p->pFrame = pFrame;
  p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
  p->nMem = pFrame->nChildMem;
  p->nCursor = (u16)pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
  p->aOp = aOp = pProgram->aOp;
  p->nOp = pProgram->nOp;
  pc = -1;

  break;
}

/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the 
** OP_Program instruction. Copy a value currently stored in a memory 
** cell of the calling (parent) frame to cell P2 in the current frames 
** address space. This is used by trigger programs to access the new.* 
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: {           /* out2-prerelease */
  VdbeFrame *pFrame;
  Mem *pIn;
  pFrame = p->pFrame;
  pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];   
  sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
  break;
}

#endif /* #ifndef SQLITE_OMIT_TRIGGER */

#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Opcode: FkCounter P1 P2 * * *
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented 
** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {
  if( pOp->p1 ){
    db->nDeferredCons += pOp->p2;
  }else{
    p->nFkConstraint += pOp->p2;
  }
  break;
}

/* Opcode: FkIfZero P1 P2 * * *
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next 
** instruction.
**
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: {         /* jump */
  if( pOp->p1 ){
    if( db->nDeferredCons==0 ) pc = pOp->p2-1;
  }else{
    if( p->nFkConstraint==0 ) pc = pOp->p2-1;
  }
  break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */

#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
** within a sub-program). Set the value of register P1 to the maximum of 
** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {        /* in2 */
  Mem *pIn1;
  VdbeFrame *pFrame;
  if( p->pFrame ){
    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
    pIn1 = &pFrame->aMem[pOp->p1];
  }else{
    pIn1 = &aMem[pOp->p1];
  }
  assert( memIsValid(pIn1) );
  sqlite3VdbeMemIntegerify(pIn1);
  pIn2 = &aMem[pOp->p2];
  sqlite3VdbeMemIntegerify(pIn2);
  if( pIn1->u.i<pIn2->u.i){
    pIn1->u.i = pIn2->u.i;
  }
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */

/* Opcode: IfPos P1 P2 * * *
**
** If the value of register P1 is 1 or greater, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfPos: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  if( pIn1->u.i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfNeg P1 P2 * * *
**
** If the value of register P1 is less than zero, jump to P2. 
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfNeg: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  if( pIn1->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfZero P1 P2 P3 * *
**
** The register P1 must contain an integer.  Add literal P3 to the
** value in register P1.  If the result is exactly 0, jump to P2. 
**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.
*/
case OP_IfZero: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  pIn1->u.i += pOp->p3;
  if( pIn1->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggStep * P2 P3 P4 P5
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
case OP_AggStep: {
  int n;
  int i;
  Mem *pMem;
  Mem *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  n = pOp->p5;
  assert( n>=0 );
  pRec = &aMem[pOp->p2];
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    assert( memIsValid(pRec) );
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
    sqlite3VdbeMemStoreType(pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.zMalloc = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
    rc = ctx.isError;
  }

  sqlite3VdbeMemRelease(&ctx.s);

  break;
}

/* Opcode: AggFinal P1 P2 * P4 *
**
** Execute the finalizer function for an aggregate.  P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function.  The P2
** argument is not used by this opcode.  It is only there to disambiguate
** functions that can take varying numbers of arguments.  The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
  Mem *pMem;
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
  pMem = &aMem[pOp->p1];
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  if( rc ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  }
  sqlite3VdbeChangeEncoding(pMem, encoding);
  UPDATE_MAX_BLOBSIZE(pMem);
  if( sqlite3VdbeMemTooBig(pMem) ){
    goto too_big;
  }
  break;
}

#ifndef SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively.  Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2].  However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
  int i;                          /* Loop counter */
  int aRes[3];                    /* Results */
  Mem *pMem;                      /* Write results here */

  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
       || pOp->p2==SQLITE_CHECKPOINT_FULL
       || pOp->p2==SQLITE_CHECKPOINT_RESTART
  );
  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
  if( rc==SQLITE_BUSY ){
    rc = SQLITE_OK;
    aRes[0] = 1;
  }
  for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
    sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
  }    
  break;
};  
#endif

#ifndef SQLITE_OMIT_PRAGMA
/* Opcode: JournalMode P1 P2 P3 * P5
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: {    /* out2-prerelease */
  Btree *pBt;                     /* Btree to change journal mode of */
  Pager *pPager;                  /* Pager associated with pBt */
  int eNew;                       /* New journal mode */
  int eOld;                       /* The old journal mode */
  const char *zFilename;          /* Name of database file for pPager */

  eNew = pOp->p3;
  assert( eNew==PAGER_JOURNALMODE_DELETE 
       || eNew==PAGER_JOURNALMODE_TRUNCATE 
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL
       || eNew==PAGER_JOURNALMODE_QUERY
  );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );

  pBt = db->aDb[pOp->p1].pBt;
  pPager = sqlite3BtreePager(pBt);
  eOld = sqlite3PagerGetJournalMode(pPager);
  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
  if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;

#ifndef SQLITE_OMIT_WAL
  zFilename = sqlite3PagerFilename(pPager);

  /* Do not allow a transition to journal_mode=WAL for a database
  ** in temporary storage or if the VFS does not support shared memory 
  */
  if( eNew==PAGER_JOURNALMODE_WAL
   && (zFilename[0]==0                         /* Temp file */
       || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
  ){
    eNew = eOld;
  }

  if( (eNew!=eOld)
   && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
  ){
    if( !db->autoCommit || db->activeVdbeCnt>1 ){
      rc = SQLITE_ERROR;
      sqlite3SetString(&p->zErrMsg, db, 
          "cannot change %s wal mode from within a transaction",
          (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
      );
      break;
    }else{
 
      if( eOld==PAGER_JOURNALMODE_WAL ){
        /* If leaving WAL mode, close the log file. If successful, the call
        ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 
        ** file. An EXCLUSIVE lock may still be held on the database file 
        ** after a successful return. 
        */
        rc = sqlite3PagerCloseWal(pPager);
        if( rc==SQLITE_OK ){
          sqlite3PagerSetJournalMode(pPager, eNew);
        }
      }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
        /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
        ** as an intermediate */
        sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
      }
  
      /* Open a transaction on the database file. Regardless of the journal
      ** mode, this transaction always uses a rollback journal.
      */
      assert( sqlite3BtreeIsInTrans(pBt)==0 );
      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
      }
    }
  }
#endif /* ifndef SQLITE_OMIT_WAL */

  if( rc ){
    eNew = eOld;
  }
  eNew = sqlite3PagerSetJournalMode(pPager, eNew);

  pOut = &aMem[pOp->p2];
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = (char *)sqlite3JournalModename(eNew);
  pOut->n = sqlite3Strlen30(pOut->z);
  pOut->enc = SQLITE_UTF8;
  sqlite3VdbeChangeEncoding(pOut, encoding);
  break;
};
#endif /* SQLITE_OMIT_PRAGMA */

#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  break;
}
#endif

#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: {        /* jump */
  Btree *pBt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pBt = db->aDb[pOp->p1].pBt;
  rc = sqlite3BtreeIncrVacuum(pBt);
  if( rc==SQLITE_DONE ){
    pc = pOp->p2 - 1;
    rc = SQLITE_OK;
  }
  break;
}
#endif

/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
** (via sqlite3_step()).
** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected. 
*/
case OP_Expire: {
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }
  break;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled. 
**
** P1 is the index of the database in sqlite3.aDb[] of the database
** on which the lock is acquired.  A readlock is obtained if P3==0 or
** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
  u8 isWriteLock = (u8)pOp->p3;
  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
    int p1 = pOp->p1; 
    assert( p1>=0 && p1<db->nDb );
    assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
    assert( isWriteLock==0 || isWriteLock==1 );
    rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
    if( (rc&0xFF)==SQLITE_LOCKED ){
      const char *z = pOp->p4.z;
      sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
    }
  }
  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  VTable *pVTab;
  pVTab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate: {
  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {
  p->inVtabMethod = 2;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
  p->inVtabMethod = 0;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;

  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  importVtabErrMsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialise vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
      pCur->pVtabCursor = pVtabCursor;
      pCur->pModule = pVtabCursor->pVtab->pModule;
    }else{
      db->mallocFailed = 1;
      pModule->xClose(pVtabCursor);
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
**
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module.  The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1.  The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
** xFilter method. Registers P3+2..P3+1+argc are the argc
** additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter: {   /* jump */
  int nArg;
  int iQuery;
  const sqlite3_module *pModule;
  Mem *pQuery;
  Mem *pArgc;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  VdbeCursor *pCur;
  int res;
  int i;
  Mem **apArg;

  pQuery = &aMem[pOp->p3];
  pArgc = &pQuery[1];
  pCur = p->apCsr[pOp->p1];
  assert( memIsValid(pQuery) );
  REGISTER_TRACE(pOp->p3, pQuery);
  assert( pCur->pVtabCursor );
  pVtabCursor = pCur->pVtabCursor;
  pVtab = pVtabCursor->pVtab;
  pModule = pVtab->pModule;

  /* Grab the index number and argc parameters */
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  nArg = (int)pArgc->u.i;
  iQuery = (int)pQuery->u.i;

  /* Invoke the xFilter method */
  {
    res = 0;
    apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pArgc[i+1];
      sqlite3VdbeMemStoreType(apArg[i]);
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }

    if( res ){
      pc = pOp->p2 - 1;
    }
  }
  pCur->nullRow = 0;

  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * *
**
** Store the value of the P2-th column of
** the row of the virtual-table that the 
** P1 cursor is pointing to into register P3.
*/
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));

  /* The output cell may already have a buffer allocated. Move
  ** the current contents to sContext.s so in case the user-function 
  ** can use the already allocated buffer instead of allocating a 
  ** new one.
  */
  sqlite3VdbeMemMove(&sContext.s, pDest);
  MemSetTypeFlag(&sContext.s, MEM_Null);

  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  importVtabErrMsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }

  /* Copy the result of the function to the P3 register. We
  ** do this regardless of whether or not an error occurred to ensure any
  ** dynamic allocation in sContext.s (a Mem struct) is  released.
  */
  sqlite3VdbeChangeEncoding(&sContext.s, encoding);
  sqlite3VdbeMemMove(pDest, &sContext.s);
  REGISTER_TRACE(pOp->p3, pDest);
  UPDATE_MAX_BLOBSIZE(pDest);

  if( sqlite3VdbeMemTooBig(pDest) ){
    goto too_big;
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VNext P1 P2 * * *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2.  Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: {   /* jump */
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int res;
  VdbeCursor *pCur;

  res = 0;
  pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  if( pCur->nullRow ){
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xNext );

  /* Invoke the xNext() method of the module. There is no way for the
  ** underlying implementation to return an error if one occurs during
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  importVtabErrMsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }

  if( !res ){
    /* If there is data, jump to P2 */
    pc = pOp->p2 - 1;
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;

  pVtab = pOp->p4.pVtab->pVtab;
  pName = &aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  assert( memIsValid(pName) );
  REGISTER_TRACE(pOp->p1, pName);
  assert( pName->flags & MEM_Str );
  rc = pVtab->pModule->xRename(pVtab, pName->z);
  importVtabErrMsg(p, pVtab);
  p->expired = 0;

  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate 
** invocation. The value in register (P3+P2-1) corresponds to the 
** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to memory cell P3)
** is the rowid of a row to delete.  If argv[0] is NULL then no 
** deletion occurs.  The argv[1] element is the rowid of the new 
** row.  This can be NULL to have the virtual table select the new 
** rowid for itself.  The subsequent elements in the array are 
** the values of columns in the new row.
**
** If P2==1 then no insert is performed.  argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;
  int nArg;
  int i;
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( ALWAYS(pModule->xUpdate) ){
    apArg = p->apArg;
    pX = &aMem[pOp->p3];
    for(i=0; i<nArg; i++){
      assert( memIsValid(pX) );
      memAboutToChange(p, pX);
      sqlite3VdbeMemStoreType(pX);
      apArg[i] = pX;
      pX++;
    }
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = rowid;
    }
    p->nChange++;
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: {            /* out2-prerelease */
  pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
  break;
}
#endif


#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
case OP_MaxPgcnt: {            /* out2-prerelease */
  unsigned int newMax;
  Btree *pBt;

  pBt = db->aDb[pOp->p1].pBt;
  newMax = 0;
  if( pOp->p3 ){
    newMax = sqlite3BtreeLastPage(pBt);
    if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
  }
  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
  break;
}
#endif


#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;

  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    if( db->xTrace ){
      char *z = sqlite3VdbeExpandSql(p, zTrace);
      db->xTrace(db->pTraceArg, z);
      sqlite3DbFree(db, z);
    }
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
    }
#endif /* SQLITE_DEBUG */
  }
  break;
}
#endif


/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer.  It is the
** the same as a no-op.  This opcodesnever appears in a real VM program.
*/
default: {          /* This is really OP_Noop and OP_Explain */
  assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
    }

#ifdef VDBE_PROFILE
    {
      u64 elapsed = sqlite3Hwtime() - start;
      pOp->cycles += elapsed;
      pOp->cnt++;
#if 0
        fprintf(stdout, "%10llu ", elapsed);
        sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
#endif
    }
#endif

    /* The following code adds nothing to the actual functionality
    ** of the program.  It is only here for testing and debugging.
    ** On the other hand, it does burn CPU cycles every time through
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    assert( pc>=-1 && pc<p->nOp );

#ifdef SQLITE_DEBUG
    if( p->trace ){
      if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
      if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
        registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
      }
      if( pOp->opflags & OPFLG_OUT3 ){
        registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
      }
    }
#endif  /* SQLITE_DEBUG */
#endif  /* NDEBUG */
  }  /* The end of the for(;;) loop the loops through opcodes */

  /* If we reach this point, it means that execution is finished with
  ** an error of some kind.
  */
vdbe_error_halt:
  assert( rc );
  p->rc = rc;
  testcase( sqlite3GlobalConfig.xLog!=0 );
  sqlite3_log(rc, "statement aborts at %d: [%s] %s", 
                   pc, p->zSql, p->zErrMsg);
  sqlite3VdbeHalt(p);
  if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
  rc = SQLITE_ERROR;
  if( resetSchemaOnFault>0 ){
    sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  sqlite3VdbeLeave(p);
  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
  rc = SQLITE_TOOBIG;
  goto vdbe_error_halt;

  /* Jump to here if a malloc() fails.
  */
no_mem:
  db->mallocFailed = 1;
  sqlite3SetString(&p->zErrMsg, db, "out of memory");
  rc = SQLITE_NOMEM;
  goto vdbe_error_halt;

  /* Jump to here for any other kind of fatal error.  The "rc" variable
  ** should hold the error number.
  */
abort_due_to_error:
  assert( p->zErrMsg==0 );
  if( db->mallocFailed ) rc = SQLITE_NOMEM;
  if( rc!=SQLITE_IOERR_NOMEM ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
  }
  goto vdbe_error_halt;

  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
  ** flag.
  */
abort_due_to_interrupt:
  assert( db->u1.isInterrupted );
  rc = SQLITE_INTERRUPT;
  p->rc = rc;
  sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
  goto vdbe_error_halt;
}

/* [<][>][^][v][top][bottom][index][help] */