This source file includes following definitions.
- ff_mdct_init
- ff_imdct_half_c
- ff_imdct_calc_c
- ff_mdct_calc_c
- ff_mdct_end
#include <stdlib.h>
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/libm.h"
#include "libavutil/mathematics.h"
#include "fft.h"
#include "fft-internal.h"
#if FFT_FLOAT
# define RSCALE(x, y) ((x) + (y))
#else
#if FFT_FIXED_32
# define RSCALE(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
#else
# define RSCALE(x, y) ((int)((x) + (unsigned)(y)) >> 1)
#endif
#endif
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
{
int n, n4, i;
double alpha, theta;
int tstep;
memset(s, 0, sizeof(*s));
n = 1 << nbits;
s->mdct_bits = nbits;
s->mdct_size = n;
n4 = n >> 2;
s->mdct_permutation = FF_MDCT_PERM_NONE;
if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
goto fail;
s->tcos = av_malloc_array(n/2, sizeof(FFTSample));
if (!s->tcos)
goto fail;
switch (s->mdct_permutation) {
case FF_MDCT_PERM_NONE:
s->tsin = s->tcos + n4;
tstep = 1;
break;
case FF_MDCT_PERM_INTERLEAVE:
s->tsin = s->tcos + 1;
tstep = 2;
break;
default:
goto fail;
}
theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
scale = sqrt(fabs(scale));
for(i=0;i<n4;i++) {
alpha = 2 * M_PI * (i + theta) / n;
#if FFT_FIXED_32
s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0);
s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0);
#else
s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
#endif
}
return 0;
fail:
ff_mdct_end(s);
return -1;
}
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
{
int k, n8, n4, n2, n, j;
const uint16_t *revtab = s->revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
const FFTSample *in1, *in2;
FFTComplex *z = (FFTComplex *)output;
n = 1 << s->mdct_bits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
in1 = input;
in2 = input + n2 - 1;
for(k = 0; k < n4; k++) {
j=revtab[k];
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
in1 += 2;
in2 -= 2;
}
s->fft_calc(s, z);
for(k = 0; k < n8; k++) {
FFTSample r0, i0, r1, i1;
CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
z[n8-k-1].re = r0;
z[n8-k-1].im = i0;
z[n8+k ].re = r1;
z[n8+k ].im = i1;
}
}
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
{
int k;
int n = 1 << s->mdct_bits;
int n2 = n >> 1;
int n4 = n >> 2;
ff_imdct_half_c(s, output+n4, input);
for(k = 0; k < n4; k++) {
output[k] = -output[n2-k-1];
output[n-k-1] = output[n2+k];
}
}
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
{
int i, j, n, n8, n4, n2, n3;
FFTDouble re, im;
const uint16_t *revtab = s->revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
FFTComplex *x = (FFTComplex *)out;
n = 1 << s->mdct_bits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
n3 = 3 * n4;
for(i=0;i<n8;i++) {
re = RSCALE(-input[2*i+n3], - input[n3-1-2*i]);
im = RSCALE(-input[n4+2*i], + input[n4-1-2*i]);
j = revtab[i];
CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
re = RSCALE( input[2*i] , - input[n2-1-2*i]);
im = RSCALE(-input[n2+2*i], - input[ n-1-2*i]);
j = revtab[n8 + i];
CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
}
s->fft_calc(s, x);
for(i=0;i<n8;i++) {
FFTSample r0, i0, r1, i1;
CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
x[n8-i-1].re = r0;
x[n8-i-1].im = i0;
x[n8+i ].re = r1;
x[n8+i ].im = i1;
}
}
av_cold void ff_mdct_end(FFTContext *s)
{
av_freep(&s->tcos);
ff_fft_end(s);
}