root/src/pkg/runtime/asm_386.s

/* [<][>][^][v][top][bottom][index][help] */
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "zasm_GOOS_GOARCH.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"

TEXT _rt0_go(SB),NOSPLIT,$0
        // copy arguments forward on an even stack
        MOVL    argc+0(FP), AX
        MOVL    argv+4(FP), BX
        SUBL    $128, SP                // plenty of scratch
        ANDL    $~15, SP
        MOVL    AX, 120(SP)             // save argc, argv away
        MOVL    BX, 124(SP)

        // set default stack bounds.
        // _cgo_init may update stackguard.
        MOVL    $runtime·g0(SB), BP
        LEAL    (-64*1024+104)(SP), BX
        MOVL    BX, g_stackguard(BP)
        MOVL    BX, g_stackguard0(BP)
        MOVL    SP, g_stackbase(BP)
        
        // find out information about the processor we're on
        MOVL    $0, AX
        CPUID
        CMPL    AX, $0
        JE      nocpuinfo
        MOVL    $1, AX
        CPUID
        MOVL    CX, runtime·cpuid_ecx(SB)
        MOVL    DX, runtime·cpuid_edx(SB)
nocpuinfo:      

        // if there is an _cgo_init, call it to let it
        // initialize and to set up GS.  if not,
        // we set up GS ourselves.
        MOVL    _cgo_init(SB), AX
        TESTL   AX, AX
        JZ      needtls
        MOVL    $setmg_gcc<>(SB), BX
        MOVL    BX, 4(SP)
        MOVL    BP, 0(SP)
        CALL    AX
        // update stackguard after _cgo_init
        MOVL    $runtime·g0(SB), CX
        MOVL    g_stackguard0(CX), AX
        MOVL    AX, g_stackguard(CX)
        // skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows
        CMPL runtime·iswindows(SB), $0
        JEQ ok
needtls:
        // skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases
        CMPL    runtime·isplan9(SB), $1
        JEQ     ok

        // set up %gs
        CALL    runtime·ldt0setup(SB)

        // store through it, to make sure it works
        get_tls(BX)
        MOVL    $0x123, g(BX)
        MOVL    runtime·tls0(SB), AX
        CMPL    AX, $0x123
        JEQ     ok
        MOVL    AX, 0   // abort
ok:
        // set up m and g "registers"
        get_tls(BX)
        LEAL    runtime·g0(SB), CX
        MOVL    CX, g(BX)
        LEAL    runtime·m0(SB), AX
        MOVL    AX, m(BX)

        // save m->g0 = g0
        MOVL    CX, m_g0(AX)

        CALL    runtime·emptyfunc(SB)  // fault if stack check is wrong

        // convention is D is always cleared
        CLD

        CALL    runtime·check(SB)

        // saved argc, argv
        MOVL    120(SP), AX
        MOVL    AX, 0(SP)
        MOVL    124(SP), AX
        MOVL    AX, 4(SP)
        CALL    runtime·args(SB)
        CALL    runtime·osinit(SB)
        CALL    runtime·hashinit(SB)
        CALL    runtime·schedinit(SB)

        // create a new goroutine to start program
        PUSHL   $runtime·main·f(SB)   // entry
        PUSHL   $0      // arg size
        ARGSIZE(8)
        CALL    runtime·newproc(SB)
        ARGSIZE(-1)
        POPL    AX
        POPL    AX

        // start this M
        CALL    runtime·mstart(SB)

        INT $3
        RET

DATA    runtime·main·f+0(SB)/4,$runtime·main(SB)
GLOBL   runtime·main·f(SB),RODATA,$4

TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
        INT $3
        RET

TEXT runtime·asminit(SB),NOSPLIT,$0-0
        // Linux and MinGW start the FPU in extended double precision.
        // Other operating systems use double precision.
        // Change to double precision to match them,
        // and to match other hardware that only has double.
        PUSHL $0x27F
        FLDCW   0(SP)
        POPL AX
        RET

/*
 *  go-routine
 */

// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $0-4
        MOVL    4(SP), AX               // gobuf
        LEAL    4(SP), BX               // caller's SP
        MOVL    BX, gobuf_sp(AX)
        MOVL    0(SP), BX               // caller's PC
        MOVL    BX, gobuf_pc(AX)
        MOVL    $0, gobuf_ret(AX)
        MOVL    $0, gobuf_ctxt(AX)
        get_tls(CX)
        MOVL    g(CX), BX
        MOVL    BX, gobuf_g(AX)
        RET

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $0-4
        MOVL    4(SP), BX               // gobuf
        MOVL    gobuf_g(BX), DX
        MOVL    0(DX), CX               // make sure g != nil
        get_tls(CX)
        MOVL    DX, g(CX)
        MOVL    gobuf_sp(BX), SP        // restore SP
        MOVL    gobuf_ret(BX), AX
        MOVL    gobuf_ctxt(BX), DX
        MOVL    $0, gobuf_sp(BX)        // clear to help garbage collector
        MOVL    $0, gobuf_ret(BX)
        MOVL    $0, gobuf_ctxt(BX)
        MOVL    gobuf_pc(BX), BX
        JMP     BX

// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return.  It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $0-4
        MOVL    fn+0(FP), DI
        
        get_tls(CX)
        MOVL    g(CX), AX       // save state in g->sched
        MOVL    0(SP), BX       // caller's PC
        MOVL    BX, (g_sched+gobuf_pc)(AX)
        LEAL    4(SP), BX       // caller's SP
        MOVL    BX, (g_sched+gobuf_sp)(AX)
        MOVL    AX, (g_sched+gobuf_g)(AX)

        // switch to m->g0 & its stack, call fn
        MOVL    m(CX), BX
        MOVL    m_g0(BX), SI
        CMPL    SI, AX  // if g == m->g0 call badmcall
        JNE     3(PC)
        MOVL    $runtime·badmcall(SB), AX
        JMP     AX
        MOVL    SI, g(CX)       // g = m->g0
        MOVL    (g_sched+gobuf_sp)(SI), SP      // sp = m->g0->sched.sp
        PUSHL   AX
        CALL    DI
        POPL    AX
        MOVL    $runtime·badmcall2(SB), AX
        JMP     AX
        RET

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$0-0
        // Cannot grow scheduler stack (m->g0).
        get_tls(CX)
        MOVL    m(CX), BX
        MOVL    m_g0(BX), SI
        CMPL    g(CX), SI
        JNE     2(PC)
        INT     $3

        // frame size in DI
        // arg size in AX
        // Save in m.
        MOVL    DI, m_moreframesize(BX)
        MOVL    AX, m_moreargsize(BX)

        // Called from f.
        // Set m->morebuf to f's caller.
        MOVL    4(SP), DI       // f's caller's PC
        MOVL    DI, (m_morebuf+gobuf_pc)(BX)
        LEAL    8(SP), CX       // f's caller's SP
        MOVL    CX, (m_morebuf+gobuf_sp)(BX)
        MOVL    CX, m_moreargp(BX)
        get_tls(CX)
        MOVL    g(CX), SI
        MOVL    SI, (m_morebuf+gobuf_g)(BX)

        // Set g->sched to context in f.
        MOVL    0(SP), AX       // f's PC
        MOVL    AX, (g_sched+gobuf_pc)(SI)
        MOVL    SI, (g_sched+gobuf_g)(SI)
        LEAL    4(SP), AX       // f's SP
        MOVL    AX, (g_sched+gobuf_sp)(SI)
        MOVL    DX, (g_sched+gobuf_ctxt)(SI)

        // Call newstack on m->g0's stack.
        MOVL    m_g0(BX), BP
        MOVL    BP, g(CX)
        MOVL    (g_sched+gobuf_sp)(BP), AX
        MOVL    -4(AX), BX      // fault if CALL would, before smashing SP
        MOVL    AX, SP
        CALL    runtime·newstack(SB)
        MOVL    $0, 0x1003      // crash if newstack returns
        RET

TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0
        MOVL    $0, DX
        JMP runtime·morestack(SB)

// Called from panic.  Mimics morestack,
// reuses stack growth code to create a frame
// with the desired args running the desired function.
//
// func call(fn *byte, arg *byte, argsize uint32).
TEXT runtime·newstackcall(SB), NOSPLIT, $0-12
        get_tls(CX)
        MOVL    m(CX), BX

        // Save our caller's state as the PC and SP to
        // restore when returning from f.
        MOVL    0(SP), AX       // our caller's PC
        MOVL    AX, (m_morebuf+gobuf_pc)(BX)
        LEAL    4(SP), AX       // our caller's SP
        MOVL    AX, (m_morebuf+gobuf_sp)(BX)
        MOVL    g(CX), AX
        MOVL    AX, (m_morebuf+gobuf_g)(BX)

        // Save our own state as the PC and SP to restore
        // if this goroutine needs to be restarted.
        MOVL    $runtime·newstackcall(SB), (g_sched+gobuf_pc)(AX)
        MOVL    SP, (g_sched+gobuf_sp)(AX)

        // Set up morestack arguments to call f on a new stack.
        // We set f's frame size to 1, as a hint to newstack
        // that this is a call from runtime·newstackcall.
        // If it turns out that f needs a larger frame than
        // the default stack, f's usual stack growth prolog will
        // allocate a new segment (and recopy the arguments).
        MOVL    4(SP), AX       // fn
        MOVL    8(SP), DX       // arg frame
        MOVL    12(SP), CX      // arg size

        MOVL    AX, m_cret(BX)  // f's PC
        MOVL    DX, m_moreargp(BX)      // f's argument pointer
        MOVL    CX, m_moreargsize(BX)   // f's argument size
        MOVL    $1, m_moreframesize(BX) // f's frame size

        // Call newstack on m->g0's stack.
        MOVL    m_g0(BX), BP
        get_tls(CX)
        MOVL    BP, g(CX)
        MOVL    (g_sched+gobuf_sp)(BP), SP
        CALL    runtime·newstack(SB)
        MOVL    $0, 0x1103      // crash if newstack returns
        RET

// reflect·call: call a function with the given argument list
// func call(f *FuncVal, arg *byte, argsize uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)          \
        CMPL    CX, $MAXSIZE;           \
        JA      3(PC);                  \
        MOVL    $runtime·NAME(SB), AX; \
        JMP     AX
// Note: can't just "JMP runtime·NAME(SB)" - bad inlining results.

TEXT reflect·call(SB), NOSPLIT, $0-16
        MOVL    argsize+8(FP), CX
        DISPATCH(call16, 16)
        DISPATCH(call32, 32)
        DISPATCH(call64, 64)
        DISPATCH(call128, 128)
        DISPATCH(call256, 256)
        DISPATCH(call512, 512)
        DISPATCH(call1024, 1024)
        DISPATCH(call2048, 2048)
        DISPATCH(call4096, 4096)
        DISPATCH(call8192, 8192)
        DISPATCH(call16384, 16384)
        DISPATCH(call32768, 32768)
        DISPATCH(call65536, 65536)
        DISPATCH(call131072, 131072)
        DISPATCH(call262144, 262144)
        DISPATCH(call524288, 524288)
        DISPATCH(call1048576, 1048576)
        DISPATCH(call2097152, 2097152)
        DISPATCH(call4194304, 4194304)
        DISPATCH(call8388608, 8388608)
        DISPATCH(call16777216, 16777216)
        DISPATCH(call33554432, 33554432)
        DISPATCH(call67108864, 67108864)
        DISPATCH(call134217728, 134217728)
        DISPATCH(call268435456, 268435456)
        DISPATCH(call536870912, 536870912)
        DISPATCH(call1073741824, 1073741824)
        MOVL    $runtime·badreflectcall(SB), AX
        JMP     AX

// Argument map for the callXX frames.  Each has one
// stack map (for the single call) with 3 arguments.
DATA gcargs_reflectcall<>+0x00(SB)/4, $1  // 1 stackmap
DATA gcargs_reflectcall<>+0x04(SB)/4, $6  // 3 args
DATA gcargs_reflectcall<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2)+(const_BitsScalar<<4))
GLOBL gcargs_reflectcall<>(SB),RODATA,$12

// callXX frames have no locals
DATA gclocals_reflectcall<>+0x00(SB)/4, $1  // 1 stackmap
DATA gclocals_reflectcall<>+0x04(SB)/4, $0  // 0 locals
GLOBL gclocals_reflectcall<>(SB),RODATA,$8

#define CALLFN(NAME,MAXSIZE)                    \
TEXT runtime·NAME(SB), WRAPPER, $MAXSIZE-16;   \
        FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_reflectcall<>(SB);    \
        FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_reflectcall<>(SB);\
        /* copy arguments to stack */           \
        MOVL    argptr+4(FP), SI;               \
        MOVL    argsize+8(FP), CX;              \
        MOVL    SP, DI;                         \
        REP;MOVSB;                              \
        /* call function */                     \
        MOVL    f+0(FP), DX;                    \
        MOVL    (DX), AX;                       \
        PCDATA  $PCDATA_StackMapIndex, $0;      \
        CALL    AX;                             \
        /* copy return values back */           \
        MOVL    argptr+4(FP), DI;               \
        MOVL    argsize+8(FP), CX;              \
        MOVL    retoffset+12(FP), BX;           \
        MOVL    SP, SI;                         \
        ADDL    BX, DI;                         \
        ADDL    BX, SI;                         \
        SUBL    BX, CX;                         \
        REP;MOVSB;                              \
        RET

CALLFN(call16, 16)
CALLFN(call32, 32)
CALLFN(call64, 64)
CALLFN(call128, 128)
CALLFN(call256, 256)
CALLFN(call512, 512)
CALLFN(call1024, 1024)
CALLFN(call2048, 2048)
CALLFN(call4096, 4096)
CALLFN(call8192, 8192)
CALLFN(call16384, 16384)
CALLFN(call32768, 32768)
CALLFN(call65536, 65536)
CALLFN(call131072, 131072)
CALLFN(call262144, 262144)
CALLFN(call524288, 524288)
CALLFN(call1048576, 1048576)
CALLFN(call2097152, 2097152)
CALLFN(call4194304, 4194304)
CALLFN(call8388608, 8388608)
CALLFN(call16777216, 16777216)
CALLFN(call33554432, 33554432)
CALLFN(call67108864, 67108864)
CALLFN(call134217728, 134217728)
CALLFN(call268435456, 268435456)
CALLFN(call536870912, 536870912)
CALLFN(call1073741824, 1073741824)

// Return point when leaving stack.
//
// Lessstack can appear in stack traces for the same reason
// as morestack; in that context, it has 0 arguments.
TEXT runtime·lessstack(SB), NOSPLIT, $0-0
        // Save return value in m->cret
        get_tls(CX)
        MOVL    m(CX), BX
        MOVL    AX, m_cret(BX)

        // Call oldstack on m->g0's stack.
        MOVL    m_g0(BX), BP
        MOVL    BP, g(CX)
        MOVL    (g_sched+gobuf_sp)(BP), SP
        CALL    runtime·oldstack(SB)
        MOVL    $0, 0x1004      // crash if oldstack returns
        RET


// bool cas(int32 *val, int32 old, int32 new)
// Atomically:
//      if(*val == old){
//              *val = new;
//              return 1;
//      }else
//              return 0;
TEXT runtime·cas(SB), NOSPLIT, $0-12
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        MOVL    12(SP), CX
        LOCK
        CMPXCHGL        CX, 0(BX)
        JZ 3(PC)
        MOVL    $0, AX
        RET
        MOVL    $1, AX
        RET

// bool runtime·cas64(uint64 *val, uint64 old, uint64 new)
// Atomically:
//      if(*val == *old){
//              *val = new;
//              return 1;
//      } else {
//              return 0;
//      }
TEXT runtime·cas64(SB), NOSPLIT, $0-20
        MOVL    4(SP), BP
        MOVL    8(SP), AX
        MOVL    12(SP), DX
        MOVL    16(SP), BX
        MOVL    20(SP), CX
        LOCK
        CMPXCHG8B       0(BP)
        JNZ     cas64_fail
        MOVL    $1, AX
        RET
cas64_fail:
        MOVL    $0, AX
        RET

// bool casp(void **p, void *old, void *new)
// Atomically:
//      if(*p == old){
//              *p = new;
//              return 1;
//      }else
//              return 0;
TEXT runtime·casp(SB), NOSPLIT, $0-12
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        MOVL    12(SP), CX
        LOCK
        CMPXCHGL        CX, 0(BX)
        JZ 3(PC)
        MOVL    $0, AX
        RET
        MOVL    $1, AX
        RET

// uint32 xadd(uint32 volatile *val, int32 delta)
// Atomically:
//      *val += delta;
//      return *val;
TEXT runtime·xadd(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        MOVL    AX, CX
        LOCK
        XADDL   AX, 0(BX)
        ADDL    CX, AX
        RET

TEXT runtime·xchg(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        XCHGL   AX, 0(BX)
        RET

TEXT runtime·xchgp(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        XCHGL   AX, 0(BX)
        RET

TEXT runtime·procyield(SB),NOSPLIT,$0-0
        MOVL    4(SP), AX
again:
        PAUSE
        SUBL    $1, AX
        JNZ     again
        RET

TEXT runtime·atomicstorep(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        XCHGL   AX, 0(BX)
        RET

TEXT runtime·atomicstore(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        XCHGL   AX, 0(BX)
        RET

// uint64 atomicload64(uint64 volatile* addr);
// so actually
// void atomicload64(uint64 *res, uint64 volatile *addr);
TEXT runtime·atomicload64(SB), NOSPLIT, $0-8
        MOVL    4(SP), BX
        MOVL    8(SP), AX
        // MOVQ (%EAX), %MM0
        BYTE $0x0f; BYTE $0x6f; BYTE $0x00
        // MOVQ %MM0, 0(%EBX)
        BYTE $0x0f; BYTE $0x7f; BYTE $0x03
        // EMMS
        BYTE $0x0F; BYTE $0x77
        RET

// void runtime·atomicstore64(uint64 volatile* addr, uint64 v);
TEXT runtime·atomicstore64(SB), NOSPLIT, $0-12
        MOVL    4(SP), AX
        // MOVQ and EMMS were introduced on the Pentium MMX.
        // MOVQ 0x8(%ESP), %MM0
        BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08
        // MOVQ %MM0, (%EAX)
        BYTE $0x0f; BYTE $0x7f; BYTE $0x00 
        // EMMS
        BYTE $0x0F; BYTE $0x77
        // This is essentially a no-op, but it provides required memory fencing.
        // It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2).
        MOVL    $0, AX
        LOCK
        XADDL   AX, (SP)
        RET

// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. pop the caller
// 2. sub 5 bytes from the callers return
// 3. jmp to the argument
TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8
        MOVL    4(SP), DX       // fn
        MOVL    8(SP), BX       // caller sp
        LEAL    -4(BX), SP      // caller sp after CALL
        SUBL    $5, (SP)        // return to CALL again
        MOVL    0(DX), BX
        JMP     BX      // but first run the deferred function

// Save state of caller into g->sched.
TEXT gosave<>(SB),NOSPLIT,$0
        PUSHL   AX
        PUSHL   BX
        get_tls(BX)
        MOVL    g(BX), BX
        LEAL    arg+0(FP), AX
        MOVL    AX, (g_sched+gobuf_sp)(BX)
        MOVL    -4(AX), AX
        MOVL    AX, (g_sched+gobuf_pc)(BX)
        MOVL    $0, (g_sched+gobuf_ret)(BX)
        MOVL    $0, (g_sched+gobuf_ctxt)(BX)
        POPL    BX
        POPL    AX
        RET

// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),NOSPLIT,$0-8
        MOVL    fn+0(FP), AX
        MOVL    arg+4(FP), BX
        MOVL    SP, DX

        // Figure out if we need to switch to m->g0 stack.
        // We get called to create new OS threads too, and those
        // come in on the m->g0 stack already.
        get_tls(CX)
        MOVL    m(CX), BP
        MOVL    m_g0(BP), SI
        MOVL    g(CX), DI
        CMPL    SI, DI
        JEQ     4(PC)
        CALL    gosave<>(SB)
        MOVL    SI, g(CX)
        MOVL    (g_sched+gobuf_sp)(SI), SP

        // Now on a scheduling stack (a pthread-created stack).
        SUBL    $32, SP
        ANDL    $~15, SP        // alignment, perhaps unnecessary
        MOVL    DI, 8(SP)       // save g
        MOVL    DX, 4(SP)       // save SP
        MOVL    BX, 0(SP)       // first argument in x86-32 ABI
        CALL    AX

        // Restore registers, g, stack pointer.
        get_tls(CX)
        MOVL    8(SP), DI
        MOVL    DI, g(CX)
        MOVL    4(SP), SP
        RET

// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$12-12
        LEAL    fn+0(FP), AX
        MOVL    AX, 0(SP)
        MOVL    frame+4(FP), AX
        MOVL    AX, 4(SP)
        MOVL    framesize+8(FP), AX
        MOVL    AX, 8(SP)
        MOVL    $runtime·cgocallback_gofunc(SB), AX
        CALL    AX
        RET

// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback_gofunc(SB),NOSPLIT,$12-12
        // If m is nil, Go did not create the current thread.
        // Call needm to obtain one for temporary use.
        // In this case, we're running on the thread stack, so there's
        // lots of space, but the linker doesn't know. Hide the call from
        // the linker analysis by using an indirect call through AX.
        get_tls(CX)
#ifdef GOOS_windows
        MOVL    $0, BP
        CMPL    CX, $0
        JEQ     2(PC)
#endif
        MOVL    m(CX), BP
        MOVL    BP, DX // saved copy of oldm
        CMPL    BP, $0
        JNE     havem
needm:
        MOVL    DX, 0(SP)
        MOVL    $runtime·needm(SB), AX
        CALL    AX
        MOVL    0(SP), DX
        get_tls(CX)
        MOVL    m(CX), BP

havem:
        // Now there's a valid m, and we're running on its m->g0.
        // Save current m->g0->sched.sp on stack and then set it to SP.
        // Save current sp in m->g0->sched.sp in preparation for
        // switch back to m->curg stack.
        // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
        MOVL    m_g0(BP), SI
        MOVL    (g_sched+gobuf_sp)(SI), AX
        MOVL    AX, 0(SP)
        MOVL    SP, (g_sched+gobuf_sp)(SI)

        // Switch to m->curg stack and call runtime.cgocallbackg.
        // Because we are taking over the execution of m->curg
        // but *not* resuming what had been running, we need to
        // save that information (m->curg->sched) so we can restore it.
        // We can restore m->curg->sched.sp easily, because calling
        // runtime.cgocallbackg leaves SP unchanged upon return.
        // To save m->curg->sched.pc, we push it onto the stack.
        // This has the added benefit that it looks to the traceback
        // routine like cgocallbackg is going to return to that
        // PC (because the frame we allocate below has the same
        // size as cgocallback_gofunc's frame declared above)
        // so that the traceback will seamlessly trace back into
        // the earlier calls.
        //
        // In the new goroutine, 0(SP) holds the saved oldm (DX) register.
        // 4(SP) and 8(SP) are unused.
        MOVL    m_curg(BP), SI
        MOVL    SI, g(CX)
        MOVL    (g_sched+gobuf_sp)(SI), DI // prepare stack as DI
        MOVL    (g_sched+gobuf_pc)(SI), BP
        MOVL    BP, -4(DI)
        LEAL    -(4+12)(DI), SP
        MOVL    DX, 0(SP)
        CALL    runtime·cgocallbackg(SB)
        MOVL    0(SP), DX

        // Restore g->sched (== m->curg->sched) from saved values.
        get_tls(CX)
        MOVL    g(CX), SI
        MOVL    12(SP), BP
        MOVL    BP, (g_sched+gobuf_pc)(SI)
        LEAL    (12+4)(SP), DI
        MOVL    DI, (g_sched+gobuf_sp)(SI)

        // Switch back to m->g0's stack and restore m->g0->sched.sp.
        // (Unlike m->curg, the g0 goroutine never uses sched.pc,
        // so we do not have to restore it.)
        MOVL    m(CX), BP
        MOVL    m_g0(BP), SI
        MOVL    SI, g(CX)
        MOVL    (g_sched+gobuf_sp)(SI), SP
        MOVL    0(SP), AX
        MOVL    AX, (g_sched+gobuf_sp)(SI)
        
        // If the m on entry was nil, we called needm above to borrow an m
        // for the duration of the call. Since the call is over, return it with dropm.
        CMPL    DX, $0
        JNE 3(PC)
        MOVL    $runtime·dropm(SB), AX
        CALL    AX

        // Done!
        RET

// void setmg(M*, G*); set m and g. for use by needm.
TEXT runtime·setmg(SB), NOSPLIT, $0-8
#ifdef GOOS_windows
        MOVL    mm+0(FP), AX
        CMPL    AX, $0
        JNE     settls
        MOVL    $0, 0x14(FS)
        RET
settls:
        LEAL    m_tls(AX), AX
        MOVL    AX, 0x14(FS)
#endif
        MOVL    mm+0(FP), AX
        get_tls(CX)
        MOVL    mm+0(FP), AX
        MOVL    AX, m(CX)
        MOVL    gg+4(FP), BX
        MOVL    BX, g(CX)
        RET

// void setmg_gcc(M*, G*); set m and g. for use by gcc
TEXT setmg_gcc<>(SB), NOSPLIT, $0
        get_tls(AX)
        MOVL    mm+0(FP), DX
        MOVL    DX, m(AX)
        MOVL    gg+4(FP), DX
        MOVL    DX,g (AX)
        RET

// check that SP is in range [g->stackbase, g->stackguard)
TEXT runtime·stackcheck(SB), NOSPLIT, $0-0
        get_tls(CX)
        MOVL    g(CX), AX
        CMPL    g_stackbase(AX), SP
        JHI     2(PC)
        INT     $3
        CMPL    SP, g_stackguard(AX)
        JHI     2(PC)
        INT     $3
        RET

TEXT runtime·getcallerpc(SB),NOSPLIT,$0-4
        MOVL    x+0(FP),AX              // addr of first arg
        MOVL    -4(AX),AX               // get calling pc
        RET

TEXT runtime·setcallerpc(SB),NOSPLIT,$0-8
        MOVL    x+0(FP),AX              // addr of first arg
        MOVL    x+4(FP), BX
        MOVL    BX, -4(AX)              // set calling pc
        RET

TEXT runtime·getcallersp(SB), NOSPLIT, $0-4
        MOVL    sp+0(FP), AX
        RET

// int64 runtime·cputicks(void), so really
// void runtime·cputicks(int64 *ticks)
TEXT runtime·cputicks(SB),NOSPLIT,$0-4
        RDTSC
        MOVL    ret+0(FP), DI
        MOVL    AX, 0(DI)
        MOVL    DX, 4(DI)
        RET

TEXT runtime·ldt0setup(SB),NOSPLIT,$16-0
        // set up ldt 7 to point at tls0
        // ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go.
        // the entry number is just a hint.  setldt will set up GS with what it used.
        MOVL    $7, 0(SP)
        LEAL    runtime·tls0(SB), AX
        MOVL    AX, 4(SP)
        MOVL    $32, 8(SP)      // sizeof(tls array)
        CALL    runtime·setldt(SB)
        RET

TEXT runtime·emptyfunc(SB),0,$0-0
        RET

TEXT runtime·abort(SB),NOSPLIT,$0-0
        INT $0x3

TEXT runtime·stackguard(SB),NOSPLIT,$0-8
        MOVL    SP, DX
        MOVL    DX, sp+0(FP)
        get_tls(CX)
        MOVL    g(CX), BX
        MOVL    g_stackguard(BX), DX
        MOVL    DX, limit+4(FP)
        RET

GLOBL runtime·tls0(SB), $32

// hash function using AES hardware instructions
TEXT runtime·aeshash(SB),NOSPLIT,$0-12
        MOVL    4(SP), DX       // ptr to hash value
        MOVL    8(SP), CX       // size
        MOVL    12(SP), AX      // ptr to data
        JMP     runtime·aeshashbody(SB)

TEXT runtime·aeshashstr(SB),NOSPLIT,$0-12
        MOVL    4(SP), DX       // ptr to hash value
        MOVL    12(SP), AX      // ptr to string struct
        MOVL    4(AX), CX       // length of string
        MOVL    (AX), AX        // string data
        JMP     runtime·aeshashbody(SB)

// AX: data
// CX: length
// DX: ptr to seed input / hash output
TEXT runtime·aeshashbody(SB),NOSPLIT,$0-12
        MOVL    (DX), X0        // seed to low 32 bits of xmm0
        PINSRD  $1, CX, X0      // size to next 32 bits of xmm0
        MOVO    runtime·aeskeysched+0(SB), X2
        MOVO    runtime·aeskeysched+16(SB), X3
        CMPL    CX, $16
        JB      aessmall
aesloop:
        CMPL    CX, $16
        JBE     aesloopend
        MOVOU   (AX), X1
        AESENC  X2, X0
        AESENC  X1, X0
        SUBL    $16, CX
        ADDL    $16, AX
        JMP     aesloop
// 1-16 bytes remaining
aesloopend:
        // This load may overlap with the previous load above.
        // We'll hash some bytes twice, but that's ok.
        MOVOU   -16(AX)(CX*1), X1
        JMP     partial
// 0-15 bytes
aessmall:
        TESTL   CX, CX
        JE      finalize        // 0 bytes

        CMPB    AX, $0xf0
        JA      highpartial

        // 16 bytes loaded at this address won't cross
        // a page boundary, so we can load it directly.
        MOVOU   (AX), X1
        ADDL    CX, CX
        PAND    masks<>(SB)(CX*8), X1
        JMP     partial
highpartial:
        // address ends in 1111xxxx.  Might be up against
        // a page boundary, so load ending at last byte.
        // Then shift bytes down using pshufb.
        MOVOU   -16(AX)(CX*1), X1
        ADDL    CX, CX
        PSHUFB  shifts<>(SB)(CX*8), X1
partial:
        // incorporate partial block into hash
        AESENC  X3, X0
        AESENC  X1, X0
finalize:       
        // finalize hash
        AESENC  X2, X0
        AESENC  X3, X0
        AESENC  X2, X0
        MOVL    X0, (DX)
        RET

TEXT runtime·aeshash32(SB),NOSPLIT,$0-12
        MOVL    4(SP), DX       // ptr to hash value
        MOVL    12(SP), AX      // ptr to data
        MOVL    (DX), X0        // seed
        PINSRD  $1, (AX), X0    // data
        AESENC  runtime·aeskeysched+0(SB), X0
        AESENC  runtime·aeskeysched+16(SB), X0
        AESENC  runtime·aeskeysched+0(SB), X0
        MOVL    X0, (DX)
        RET

TEXT runtime·aeshash64(SB),NOSPLIT,$0-12
        MOVL    4(SP), DX       // ptr to hash value
        MOVL    12(SP), AX      // ptr to data
        MOVQ    (AX), X0        // data
        PINSRD  $2, (DX), X0    // seed
        AESENC  runtime·aeskeysched+0(SB), X0
        AESENC  runtime·aeskeysched+16(SB), X0
        AESENC  runtime·aeskeysched+0(SB), X0
        MOVL    X0, (DX)
        RET

// simple mask to get rid of data in the high part of the register.
DATA masks<>+0x00(SB)/4, $0x00000000
DATA masks<>+0x04(SB)/4, $0x00000000
DATA masks<>+0x08(SB)/4, $0x00000000
DATA masks<>+0x0c(SB)/4, $0x00000000
        
DATA masks<>+0x10(SB)/4, $0x000000ff
DATA masks<>+0x14(SB)/4, $0x00000000
DATA masks<>+0x18(SB)/4, $0x00000000
DATA masks<>+0x1c(SB)/4, $0x00000000
        
DATA masks<>+0x20(SB)/4, $0x0000ffff
DATA masks<>+0x24(SB)/4, $0x00000000
DATA masks<>+0x28(SB)/4, $0x00000000
DATA masks<>+0x2c(SB)/4, $0x00000000
        
DATA masks<>+0x30(SB)/4, $0x00ffffff
DATA masks<>+0x34(SB)/4, $0x00000000
DATA masks<>+0x38(SB)/4, $0x00000000
DATA masks<>+0x3c(SB)/4, $0x00000000
        
DATA masks<>+0x40(SB)/4, $0xffffffff
DATA masks<>+0x44(SB)/4, $0x00000000
DATA masks<>+0x48(SB)/4, $0x00000000
DATA masks<>+0x4c(SB)/4, $0x00000000
        
DATA masks<>+0x50(SB)/4, $0xffffffff
DATA masks<>+0x54(SB)/4, $0x000000ff
DATA masks<>+0x58(SB)/4, $0x00000000
DATA masks<>+0x5c(SB)/4, $0x00000000
        
DATA masks<>+0x60(SB)/4, $0xffffffff
DATA masks<>+0x64(SB)/4, $0x0000ffff
DATA masks<>+0x68(SB)/4, $0x00000000
DATA masks<>+0x6c(SB)/4, $0x00000000
        
DATA masks<>+0x70(SB)/4, $0xffffffff
DATA masks<>+0x74(SB)/4, $0x00ffffff
DATA masks<>+0x78(SB)/4, $0x00000000
DATA masks<>+0x7c(SB)/4, $0x00000000
        
DATA masks<>+0x80(SB)/4, $0xffffffff
DATA masks<>+0x84(SB)/4, $0xffffffff
DATA masks<>+0x88(SB)/4, $0x00000000
DATA masks<>+0x8c(SB)/4, $0x00000000
        
DATA masks<>+0x90(SB)/4, $0xffffffff
DATA masks<>+0x94(SB)/4, $0xffffffff
DATA masks<>+0x98(SB)/4, $0x000000ff
DATA masks<>+0x9c(SB)/4, $0x00000000
        
DATA masks<>+0xa0(SB)/4, $0xffffffff
DATA masks<>+0xa4(SB)/4, $0xffffffff
DATA masks<>+0xa8(SB)/4, $0x0000ffff
DATA masks<>+0xac(SB)/4, $0x00000000
        
DATA masks<>+0xb0(SB)/4, $0xffffffff
DATA masks<>+0xb4(SB)/4, $0xffffffff
DATA masks<>+0xb8(SB)/4, $0x00ffffff
DATA masks<>+0xbc(SB)/4, $0x00000000
        
DATA masks<>+0xc0(SB)/4, $0xffffffff
DATA masks<>+0xc4(SB)/4, $0xffffffff
DATA masks<>+0xc8(SB)/4, $0xffffffff
DATA masks<>+0xcc(SB)/4, $0x00000000
        
DATA masks<>+0xd0(SB)/4, $0xffffffff
DATA masks<>+0xd4(SB)/4, $0xffffffff
DATA masks<>+0xd8(SB)/4, $0xffffffff
DATA masks<>+0xdc(SB)/4, $0x000000ff
        
DATA masks<>+0xe0(SB)/4, $0xffffffff
DATA masks<>+0xe4(SB)/4, $0xffffffff
DATA masks<>+0xe8(SB)/4, $0xffffffff
DATA masks<>+0xec(SB)/4, $0x0000ffff
        
DATA masks<>+0xf0(SB)/4, $0xffffffff
DATA masks<>+0xf4(SB)/4, $0xffffffff
DATA masks<>+0xf8(SB)/4, $0xffffffff
DATA masks<>+0xfc(SB)/4, $0x00ffffff

GLOBL masks<>(SB),RODATA,$256

// these are arguments to pshufb.  They move data down from
// the high bytes of the register to the low bytes of the register.
// index is how many bytes to move.
DATA shifts<>+0x00(SB)/4, $0x00000000
DATA shifts<>+0x04(SB)/4, $0x00000000
DATA shifts<>+0x08(SB)/4, $0x00000000
DATA shifts<>+0x0c(SB)/4, $0x00000000
        
DATA shifts<>+0x10(SB)/4, $0xffffff0f
DATA shifts<>+0x14(SB)/4, $0xffffffff
DATA shifts<>+0x18(SB)/4, $0xffffffff
DATA shifts<>+0x1c(SB)/4, $0xffffffff
        
DATA shifts<>+0x20(SB)/4, $0xffff0f0e
DATA shifts<>+0x24(SB)/4, $0xffffffff
DATA shifts<>+0x28(SB)/4, $0xffffffff
DATA shifts<>+0x2c(SB)/4, $0xffffffff
        
DATA shifts<>+0x30(SB)/4, $0xff0f0e0d
DATA shifts<>+0x34(SB)/4, $0xffffffff
DATA shifts<>+0x38(SB)/4, $0xffffffff
DATA shifts<>+0x3c(SB)/4, $0xffffffff
        
DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c
DATA shifts<>+0x44(SB)/4, $0xffffffff
DATA shifts<>+0x48(SB)/4, $0xffffffff
DATA shifts<>+0x4c(SB)/4, $0xffffffff
        
DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b
DATA shifts<>+0x54(SB)/4, $0xffffff0f
DATA shifts<>+0x58(SB)/4, $0xffffffff
DATA shifts<>+0x5c(SB)/4, $0xffffffff
        
DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a
DATA shifts<>+0x64(SB)/4, $0xffff0f0e
DATA shifts<>+0x68(SB)/4, $0xffffffff
DATA shifts<>+0x6c(SB)/4, $0xffffffff
        
DATA shifts<>+0x70(SB)/4, $0x0c0b0a09
DATA shifts<>+0x74(SB)/4, $0xff0f0e0d
DATA shifts<>+0x78(SB)/4, $0xffffffff
DATA shifts<>+0x7c(SB)/4, $0xffffffff
        
DATA shifts<>+0x80(SB)/4, $0x0b0a0908
DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c
DATA shifts<>+0x88(SB)/4, $0xffffffff
DATA shifts<>+0x8c(SB)/4, $0xffffffff
        
DATA shifts<>+0x90(SB)/4, $0x0a090807
DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b
DATA shifts<>+0x98(SB)/4, $0xffffff0f
DATA shifts<>+0x9c(SB)/4, $0xffffffff
        
DATA shifts<>+0xa0(SB)/4, $0x09080706
DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a
DATA shifts<>+0xa8(SB)/4, $0xffff0f0e
DATA shifts<>+0xac(SB)/4, $0xffffffff
        
DATA shifts<>+0xb0(SB)/4, $0x08070605
DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09
DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d
DATA shifts<>+0xbc(SB)/4, $0xffffffff
        
DATA shifts<>+0xc0(SB)/4, $0x07060504
DATA shifts<>+0xc4(SB)/4, $0x0b0a0908
DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c
DATA shifts<>+0xcc(SB)/4, $0xffffffff
        
DATA shifts<>+0xd0(SB)/4, $0x06050403
DATA shifts<>+0xd4(SB)/4, $0x0a090807
DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b
DATA shifts<>+0xdc(SB)/4, $0xffffff0f
        
DATA shifts<>+0xe0(SB)/4, $0x05040302
DATA shifts<>+0xe4(SB)/4, $0x09080706
DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a
DATA shifts<>+0xec(SB)/4, $0xffff0f0e
        
DATA shifts<>+0xf0(SB)/4, $0x04030201
DATA shifts<>+0xf4(SB)/4, $0x08070605
DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09
DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d

GLOBL shifts<>(SB),RODATA,$256

TEXT runtime·memeq(SB),NOSPLIT,$0-12
        MOVL    a+0(FP), SI
        MOVL    b+4(FP), DI
        MOVL    count+8(FP), BX
        JMP     runtime·memeqbody(SB)

TEXT bytes·Equal(SB),NOSPLIT,$0-25
        MOVL    a_len+4(FP), BX
        MOVL    b_len+16(FP), CX
        XORL    AX, AX
        CMPL    BX, CX
        JNE     eqret
        MOVL    a+0(FP), SI
        MOVL    b+12(FP), DI
        CALL    runtime·memeqbody(SB)
eqret:
        MOVB    AX, ret+24(FP)
        RET

// a in SI
// b in DI
// count in BX
TEXT runtime·memeqbody(SB),NOSPLIT,$0-0
        XORL    AX, AX

        CMPL    BX, $4
        JB      small

        // 64 bytes at a time using xmm registers
hugeloop:
        CMPL    BX, $64
        JB      bigloop
        TESTL   $0x4000000, runtime·cpuid_edx(SB) // check for sse2
        JE      bigloop
        MOVOU   (SI), X0
        MOVOU   (DI), X1
        MOVOU   16(SI), X2
        MOVOU   16(DI), X3
        MOVOU   32(SI), X4
        MOVOU   32(DI), X5
        MOVOU   48(SI), X6
        MOVOU   48(DI), X7
        PCMPEQB X1, X0
        PCMPEQB X3, X2
        PCMPEQB X5, X4
        PCMPEQB X7, X6
        PAND    X2, X0
        PAND    X6, X4
        PAND    X4, X0
        PMOVMSKB X0, DX
        ADDL    $64, SI
        ADDL    $64, DI
        SUBL    $64, BX
        CMPL    DX, $0xffff
        JEQ     hugeloop
        RET

        // 4 bytes at a time using 32-bit register
bigloop:
        CMPL    BX, $4
        JBE     leftover
        MOVL    (SI), CX
        MOVL    (DI), DX
        ADDL    $4, SI
        ADDL    $4, DI
        SUBL    $4, BX
        CMPL    CX, DX
        JEQ     bigloop
        RET

        // remaining 0-4 bytes
leftover:
        MOVL    -4(SI)(BX*1), CX
        MOVL    -4(DI)(BX*1), DX
        CMPL    CX, DX
        SETEQ   AX
        RET

small:
        CMPL    BX, $0
        JEQ     equal

        LEAL    0(BX*8), CX
        NEGL    CX

        MOVL    SI, DX
        CMPB    DX, $0xfc
        JA      si_high

        // load at SI won't cross a page boundary.
        MOVL    (SI), SI
        JMP     si_finish
si_high:
        // address ends in 111111xx.  Load up to bytes we want, move to correct position.
        MOVL    -4(SI)(BX*1), SI
        SHRL    CX, SI
si_finish:

        // same for DI.
        MOVL    DI, DX
        CMPB    DX, $0xfc
        JA      di_high
        MOVL    (DI), DI
        JMP     di_finish
di_high:
        MOVL    -4(DI)(BX*1), DI
        SHRL    CX, DI
di_finish:

        SUBL    SI, DI
        SHLL    CX, DI
equal:
        SETEQ   AX
        RET

TEXT runtime·cmpstring(SB),NOSPLIT,$0-20
        MOVL    s1+0(FP), SI
        MOVL    s1+4(FP), BX
        MOVL    s2+8(FP), DI
        MOVL    s2+12(FP), DX
        CALL    runtime·cmpbody(SB)
        MOVL    AX, res+16(FP)
        RET

TEXT bytes·Compare(SB),NOSPLIT,$0-28
        MOVL    s1+0(FP), SI
        MOVL    s1+4(FP), BX
        MOVL    s2+12(FP), DI
        MOVL    s2+16(FP), DX
        CALL    runtime·cmpbody(SB)
        MOVL    AX, res+24(FP)
        RET

TEXT bytes·IndexByte(SB),NOSPLIT,$0
        MOVL    s+0(FP), SI
        MOVL    s_len+4(FP), CX
        MOVB    c+12(FP), AL
        MOVL    SI, DI
        CLD; REPN; SCASB
        JZ 3(PC)
        MOVL    $-1, ret+16(FP)
        RET
        SUBL    SI, DI
        SUBL    $1, DI
        MOVL    DI, ret+16(FP)
        RET

TEXT strings·IndexByte(SB),NOSPLIT,$0
        MOVL    s+0(FP), SI
        MOVL    s_len+4(FP), CX
        MOVB    c+8(FP), AL
        MOVL    SI, DI
        CLD; REPN; SCASB
        JZ 3(PC)
        MOVL    $-1, ret+12(FP)
        RET
        SUBL    SI, DI
        SUBL    $1, DI
        MOVL    DI, ret+12(FP)
        RET

// input:
//   SI = a
//   DI = b
//   BX = alen
//   DX = blen
// output:
//   AX = 1/0/-1
TEXT runtime·cmpbody(SB),NOSPLIT,$0-0
        CMPL    SI, DI
        JEQ     cmp_allsame
        CMPL    BX, DX
        MOVL    DX, BP
        CMOVLLT BX, BP // BP = min(alen, blen)
        CMPL    BP, $4
        JB      cmp_small
        TESTL   $0x4000000, runtime·cpuid_edx(SB) // check for sse2
        JE      cmp_mediumloop
cmp_largeloop:
        CMPL    BP, $16
        JB      cmp_mediumloop
        MOVOU   (SI), X0
        MOVOU   (DI), X1
        PCMPEQB X0, X1
        PMOVMSKB X1, AX
        XORL    $0xffff, AX     // convert EQ to NE
        JNE     cmp_diff16      // branch if at least one byte is not equal
        ADDL    $16, SI
        ADDL    $16, DI
        SUBL    $16, BP
        JMP     cmp_largeloop

cmp_diff16:
        BSFL    AX, BX  // index of first byte that differs
        XORL    AX, AX
        MOVB    (SI)(BX*1), CX
        CMPB    CX, (DI)(BX*1)
        SETHI   AX
        LEAL    -1(AX*2), AX    // convert 1/0 to +1/-1
        RET

cmp_mediumloop:
        CMPL    BP, $4
        JBE     cmp_0through4
        MOVL    (SI), AX
        MOVL    (DI), CX
        CMPL    AX, CX
        JNE     cmp_diff4
        ADDL    $4, SI
        ADDL    $4, DI
        SUBL    $4, BP
        JMP     cmp_mediumloop

cmp_0through4:
        MOVL    -4(SI)(BP*1), AX
        MOVL    -4(DI)(BP*1), CX
        CMPL    AX, CX
        JEQ     cmp_allsame

cmp_diff4:
        BSWAPL  AX      // reverse order of bytes
        BSWAPL  CX
        XORL    AX, CX  // find bit differences
        BSRL    CX, CX  // index of highest bit difference
        SHRL    CX, AX  // move a's bit to bottom
        ANDL    $1, AX  // mask bit
        LEAL    -1(AX*2), AX // 1/0 => +1/-1
        RET

        // 0-3 bytes in common
cmp_small:
        LEAL    (BP*8), CX
        NEGL    CX
        JEQ     cmp_allsame

        // load si
        CMPB    SI, $0xfc
        JA      cmp_si_high
        MOVL    (SI), SI
        JMP     cmp_si_finish
cmp_si_high:
        MOVL    -4(SI)(BP*1), SI
        SHRL    CX, SI
cmp_si_finish:
        SHLL    CX, SI

        // same for di
        CMPB    DI, $0xfc
        JA      cmp_di_high
        MOVL    (DI), DI
        JMP     cmp_di_finish
cmp_di_high:
        MOVL    -4(DI)(BP*1), DI
        SHRL    CX, DI
cmp_di_finish:
        SHLL    CX, DI

        BSWAPL  SI      // reverse order of bytes
        BSWAPL  DI
        XORL    SI, DI  // find bit differences
        JEQ     cmp_allsame
        BSRL    DI, CX  // index of highest bit difference
        SHRL    CX, SI  // move a's bit to bottom
        ANDL    $1, SI  // mask bit
        LEAL    -1(SI*2), AX // 1/0 => +1/-1
        RET

        // all the bytes in common are the same, so we just need
        // to compare the lengths.
cmp_allsame:
        XORL    AX, AX
        XORL    CX, CX
        CMPL    BX, DX
        SETGT   AX      // 1 if alen > blen
        SETEQ   CX      // 1 if alen == blen
        LEAL    -1(CX)(AX*2), AX        // 1,0,-1 result
        RET

// A Duff's device for zeroing memory.
// The compiler jumps to computed addresses within
// this routine to zero chunks of memory.  Do not
// change this code without also changing the code
// in ../../cmd/8g/ggen.c:clearfat.
// AX: zero
// DI: ptr to memory to be zeroed
// DI is updated as a side effect.
TEXT runtime·duffzero(SB), NOSPLIT, $0-0
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        STOSL
        RET

// A Duff's device for copying memory.
// The compiler jumps to computed addresses within
// this routine to copy chunks of memory.  Source
// and destination must not overlap.  Do not
// change this code without also changing the code
// in ../../cmd/6g/cgen.c:sgen.
// SI: ptr to source memory
// DI: ptr to destination memory
// SI and DI are updated as a side effect.

// NOTE: this is equivalent to a sequence of MOVSL but
// for some reason MOVSL is really slow.
TEXT runtime·duffcopy(SB), NOSPLIT, $0-0
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        MOVL    (SI),CX
        ADDL    $4,SI
        MOVL    CX,(DI)
        ADDL    $4,DI
        
        RET

TEXT runtime·timenow(SB), NOSPLIT, $0-0
        JMP     time·now(SB)

/* [<][>][^][v][top][bottom][index][help] */