// Derived from Inferno utils/6c/reg.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c
//
//      Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
//      Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
//      Portions Copyright © 1997-1999 Vita Nuova Limited
//      Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
//      Portions Copyright © 2004,2006 Bruce Ellis
//      Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
//      Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
//      Portions Copyright © 2009 The Go Authors.  All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "opt.h"
#define NREGVAR 32      /* 16 general + 16 floating */
#define REGBITS ((uint32)0xffffffff)
static  Reg*    firstr;
static  int     first   = 1;
int
rcmp(const void *a1, const void *a2)
{
        Rgn *p1, *p2;
        int c1, c2;
        p1 = (Rgn*)a1;
        p2 = (Rgn*)a2;
        c1 = p2->cost;
        c2 = p1->cost;
        if(c1 -= c2)
                return c1;
        return p2->varno - p1->varno;
}
static void
setaddrs(Bits bit)
{
        int i, n;
        Var *v;
        Node *node;
        while(bany(&bit)) {
                // convert each bit to a variable
                i = bnum(bit);
                node = var[i].node;
                n = var[i].name;
                bit.b[i/32] &= ~(1L<<(i%32));
                // disable all pieces of that variable
                for(i=0; i<nvar; i++) {
                        v = var+i;
                        if(v->node == node && v->name == n)
                                v->addr = 2;
                }
        }
}
static char* regname[] = {
        ".AX",
        ".CX",
        ".DX",
        ".BX",
        ".SP",
        ".BP",
        ".SI",
        ".DI",
        ".R8",
        ".R9",
        ".R10",
        ".R11",
        ".R12",
        ".R13",
        ".R14",
        ".R15",
        ".X0",
        ".X1",
        ".X2",
        ".X3",
        ".X4",
        ".X5",
        ".X6",
        ".X7",
        ".X8",
        ".X9",
        ".X10",
        ".X11",
        ".X12",
        ".X13",
        ".X14",
        ".X15",
};
static Node* regnodes[NREGVAR];
static void walkvardef(Node *n, Reg *r, int active);
void
regopt(Prog *firstp)
{
        Reg *r, *r1;
        Prog *p;
        Graph *g;
        ProgInfo info;
        int i, z, active;
        uint32 vreg;
        Bits bit;
        if(first) {
                fmtinstall('Q', Qconv);
                exregoffset = D_R15;
                first = 0;
        }
        mergetemp(firstp);
        /*
         * control flow is more complicated in generated go code
         * than in generated c code.  define pseudo-variables for
         * registers, so we have complete register usage information.
         */
        nvar = NREGVAR;
        memset(var, 0, NREGVAR*sizeof var[0]);
        for(i=0; i<NREGVAR; i++) {
                if(regnodes[i] == N)
                        regnodes[i] = newname(lookup(regname[i]));
                var[i].node = regnodes[i];
        }
        regbits = RtoB(D_SP);
        for(z=0; z<BITS; z++) {
                externs.b[z] = 0;
                params.b[z] = 0;
                consts.b[z] = 0;
                addrs.b[z] = 0;
                ivar.b[z] = 0;
                ovar.b[z] = 0;
        }
        /*
         * pass 1
         * build aux data structure
         * allocate pcs
         * find use and set of variables
         */
        g = flowstart(firstp, sizeof(Reg));
        if(g == nil) {
                for(i=0; i<nvar; i++)
                        var[i].node->opt = nil;
                return;
        }
        firstr = (Reg*)g->start;
        for(r = firstr; r != R; r = (Reg*)r->f.link) {
                p = r->f.prog;
                if(p->as == AVARDEF || p->as == AVARKILL)
                        continue;
                proginfo(&info, p);
                // Avoid making variables for direct-called functions.
                if(p->as == ACALL && p->to.type == D_EXTERN)
                        continue;
                r->use1.b[0] |= info.reguse | info.regindex;
                r->set.b[0] |= info.regset;
                bit = mkvar(r, &p->from);
                if(bany(&bit)) {
                        if(info.flags & LeftAddr)
                                setaddrs(bit);
                        if(info.flags & LeftRead)
                                for(z=0; z<BITS; z++)
                                        r->use1.b[z] |= bit.b[z];
                        if(info.flags & LeftWrite)
                                for(z=0; z<BITS; z++)
                                        r->set.b[z] |= bit.b[z];
                }
                bit = mkvar(r, &p->to);
                if(bany(&bit)) {        
                        if(info.flags & RightAddr)
                                setaddrs(bit);
                        if(info.flags & RightRead)
                                for(z=0; z<BITS; z++)
                                        r->use2.b[z] |= bit.b[z];
                        if(info.flags & RightWrite)
                                for(z=0; z<BITS; z++)
                                        r->set.b[z] |= bit.b[z];
                }
        }
        for(i=0; i<nvar; i++) {
                Var *v = var+i;
                if(v->addr) {
                        bit = blsh(i);
                        for(z=0; z<BITS; z++)
                                addrs.b[z] |= bit.b[z];
                }
                if(debug['R'] && debug['v'])
                        print("bit=%2d addr=%d et=%-6E w=%-2d s=%N + %lld\n",
                                i, v->addr, v->etype, v->width, v->node, v->offset);
        }
        if(debug['R'] && debug['v'])
                dumpit("pass1", &firstr->f, 1);
        /*
         * pass 2
         * find looping structure
         */
        flowrpo(g);
        if(debug['R'] && debug['v'])
                dumpit("pass2", &firstr->f, 1);
        /*
         * pass 2.5
         * iterate propagating fat vardef covering forward
         * r->act records vars with a VARDEF since the last CALL.
         * (r->act will be reused in pass 5 for something else,
         * but we'll be done with it by then.)
         */
        active = 0;
        for(r = firstr; r != R; r = (Reg*)r->f.link) {
                r->f.active = 0;
                r->act = zbits;
        }
        for(r = firstr; r != R; r = (Reg*)r->f.link) {
                p = r->f.prog;
                if(p->as == AVARDEF && isfat(p->to.node->type) && p->to.node->opt != nil) {
                        active++;
                        walkvardef(p->to.node, r, active);
                }
        }
        /*
         * pass 3
         * iterate propagating usage
         *      back until flow graph is complete
         */
loop1:
        change = 0;
        for(r = firstr; r != R; r = (Reg*)r->f.link)
                r->f.active = 0;
        for(r = firstr; r != R; r = (Reg*)r->f.link)
                if(r->f.prog->as == ARET)
                        prop(r, zbits, zbits);
loop11:
        /* pick up unreachable code */
        i = 0;
        for(r = firstr; r != R; r = r1) {
                r1 = (Reg*)r->f.link;
                if(r1 && r1->f.active && !r->f.active) {
                        prop(r, zbits, zbits);
                        i = 1;
                }
        }
        if(i)
                goto loop11;
        if(change)
                goto loop1;
        if(debug['R'] && debug['v'])
                dumpit("pass3", &firstr->f, 1);
        /*
         * pass 4
         * iterate propagating register/variable synchrony
         *      forward until graph is complete
         */
loop2:
        change = 0;
        for(r = firstr; r != R; r = (Reg*)r->f.link)
                r->f.active = 0;
        synch(firstr, zbits);
        if(change)
                goto loop2;
        if(debug['R'] && debug['v'])
                dumpit("pass4", &firstr->f, 1);
        /*
         * pass 4.5
         * move register pseudo-variables into regu.
         */
        for(r = firstr; r != R; r = (Reg*)r->f.link) {
                r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS;
                r->set.b[0] &= ~REGBITS;
                r->use1.b[0] &= ~REGBITS;
                r->use2.b[0] &= ~REGBITS;
                r->refbehind.b[0] &= ~REGBITS;
                r->refahead.b[0] &= ~REGBITS;
                r->calbehind.b[0] &= ~REGBITS;
                r->calahead.b[0] &= ~REGBITS;
                r->regdiff.b[0] &= ~REGBITS;
                r->act.b[0] &= ~REGBITS;
        }
        /*
         * pass 5
         * isolate regions
         * calculate costs (paint1)
         */
        r = firstr;
        if(r) {
                for(z=0; z<BITS; z++)
                        bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
                          ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
                if(bany(&bit) && !r->f.refset) {
                        // should never happen - all variables are preset
                        if(debug['w'])
                                print("%L: used and not set: %Q\n", r->f.prog->lineno, bit);
                        r->f.refset = 1;
                }
        }
        for(r = firstr; r != R; r = (Reg*)r->f.link)
                r->act = zbits;
        rgp = region;
        nregion = 0;
        for(r = firstr; r != R; r = (Reg*)r->f.link) {
                for(z=0; z<BITS; z++)
                        bit.b[z] = r->set.b[z] &
                          ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
                if(bany(&bit) && !r->f.refset) {
                        if(debug['w'])
                                print("%L: set and not used: %Q\n", r->f.prog->lineno, bit);
                        r->f.refset = 1;
                        excise(&r->f);
                }
                for(z=0; z<BITS; z++)
                        bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
                while(bany(&bit)) {
                        i = bnum(bit);
                        rgp->enter = r;
                        rgp->varno = i;
                        change = 0;
                        paint1(r, i);
                        bit.b[i/32] &= ~(1L<<(i%32));
                        if(change <= 0)
                                continue;
                        rgp->cost = change;
                        nregion++;
                        if(nregion >= NRGN) {
                                if(debug['R'] && debug['v'])
                                        print("too many regions\n");
                                goto brk;
                        }
                        rgp++;
                }
        }
brk:
        qsort(region, nregion, sizeof(region[0]), rcmp);
        if(debug['R'] && debug['v'])
                dumpit("pass5", &firstr->f, 1);
        /*
         * pass 6
         * determine used registers (paint2)
         * replace code (paint3)
         */
        rgp = region;
        for(i=0; i<nregion; i++) {
                bit = blsh(rgp->varno);
                vreg = paint2(rgp->enter, rgp->varno);
                vreg = allreg(vreg, rgp);
                if(rgp->regno != 0) {
                        if(debug['R'] && debug['v']) {
                                Var *v;
                                v = var + rgp->varno;
                                print("registerize %N+%lld (bit=%2d et=%2E) in %R\n",
                                                v->node, v->offset, rgp->varno, v->etype, rgp->regno);
                        }
                        paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
                }
                rgp++;
        }
        if(debug['R'] && debug['v'])
                dumpit("pass6", &firstr->f, 1);
        
        /*
         * free aux structures. peep allocates new ones.
         */
        for(i=0; i<nvar; i++)
                var[i].node->opt = nil;
        flowend(g);
        firstr = R;
        /*
         * pass 7
         * peep-hole on basic block
         */
        if(!debug['R'] || debug['P'])
                peep(firstp);
        /*
         * eliminate nops
         */
        for(p=firstp; p!=P; p=p->link) {
                while(p->link != P && p->link->as == ANOP)
                        p->link = p->link->link;
                if(p->to.type == D_BRANCH)
                        while(p->to.u.branch != P && p->to.u.branch->as == ANOP)
                                p->to.u.branch = p->to.u.branch->link;
        }
        if(debug['R']) {
                if(ostats.ncvtreg ||
                   ostats.nspill ||
                   ostats.nreload ||
                   ostats.ndelmov ||
                   ostats.nvar ||
                   ostats.naddr ||
                   0)
                        print("\nstats\n");
                if(ostats.ncvtreg)
                        print(" %4d cvtreg\n", ostats.ncvtreg);
                if(ostats.nspill)
                        print(" %4d spill\n", ostats.nspill);
                if(ostats.nreload)
                        print(" %4d reload\n", ostats.nreload);
                if(ostats.ndelmov)
                        print(" %4d delmov\n", ostats.ndelmov);
                if(ostats.nvar)
                        print(" %4d var\n", ostats.nvar);
                if(ostats.naddr)
                        print(" %4d addr\n", ostats.naddr);
                memset(&ostats, 0, sizeof(ostats));
        }
}
static void
walkvardef(Node *n, Reg *r, int active)
{
        Reg *r1, *r2;
        int bn;
        Var *v;
        
        for(r1=r; r1!=R; r1=(Reg*)r1->f.s1) {
                if(r1->f.active == active)
                        break;
                r1->f.active = active;
                if(r1->f.prog->as == AVARKILL && r1->f.prog->to.node == n)
                        break;
                for(v=n->opt; v!=nil; v=v->nextinnode) {
                        bn = v - var;
                        r1->act.b[bn/32] |= 1L << (bn%32);
                }
                if(r1->f.prog->as == ACALL)
                        break;
        }
        for(r2=r; r2!=r1; r2=(Reg*)r2->f.s1)
                if(r2->f.s2 != nil)
                        walkvardef(n, (Reg*)r2->f.s2, active);
}
/*
 * add mov b,rn
 * just after r
 */
void
addmove(Reg *r, int bn, int rn, int f)
{
        Prog *p, *p1;
        Adr *a;
        Var *v;
        p1 = mal(sizeof(*p1));
        clearp(p1);
        p1->pc = 9999;
        p = r->f.prog;
        p1->link = p->link;
        p->link = p1;
        p1->lineno = p->lineno;
        v = var + bn;
        a = &p1->to;
        a->offset = v->offset;
        a->etype = v->etype;
        a->type = v->name;
        a->node = v->node;
        a->sym = linksym(v->node->sym);
        // need to clean this up with wptr and
        // some of the defaults
        p1->as = AMOVL;
        switch(simtype[(uchar)v->etype]) {
        default:
                fatal("unknown type %E", v->etype);
        case TINT8:
        case TUINT8:
        case TBOOL:
                p1->as = AMOVB;
                break;
        case TINT16:
        case TUINT16:
                p1->as = AMOVW;
                break;
        case TINT64:
        case TUINT64:
        case TPTR64:
                p1->as = AMOVQ;
                break;
        case TFLOAT32:
                p1->as = AMOVSS;
                break;
        case TFLOAT64:
                p1->as = AMOVSD;
                break;
        case TINT32:
        case TUINT32:
        case TPTR32:
                break;
        }
        p1->from.type = rn;
        if(!f) {
                p1->from = *a;
                *a = zprog.from;
                a->type = rn;
                if(v->etype == TUINT8)
                        p1->as = AMOVB;
                if(v->etype == TUINT16)
                        p1->as = AMOVW;
        }
        if(debug['R'] && debug['v'])
                print("%P ===add=== %P\n", p, p1);
        ostats.nspill++;
}
uint32
doregbits(int r)
{
        uint32 b;
        b = 0;
        if(r >= D_INDIR)
                r -= D_INDIR;
        if(r >= D_AX && r <= D_R15)
                b |= RtoB(r);
        else
        if(r >= D_AL && r <= D_R15B)
                b |= RtoB(r-D_AL+D_AX);
        else
        if(r >= D_AH && r <= D_BH)
                b |= RtoB(r-D_AH+D_AX);
        else
        if(r >= D_X0 && r <= D_X0+15)
                b |= FtoB(r);
        return b;
}
static int
overlap(int64 o1, int w1, int64 o2, int w2)
{
        int64 t1, t2;
        t1 = o1+w1;
        t2 = o2+w2;
        if(!(t1 > o2 && t2 > o1))
                return 0;
        return 1;
}
Bits
mkvar(Reg *r, Adr *a)
{
        Var *v;
        int i, t, n, et, z, flag;
        int64 w;
        uint32 regu;
        int64 o;
        Bits bit;
        Node *node;
        /*
         * mark registers used
         */
        t = a->type;
        if(t == D_NONE)
                goto none;
        if(r != R)
                r->use1.b[0] |= doregbits(a->index);
        switch(t) {
        default:
                regu = doregbits(t);
                if(regu == 0)
                        goto none;
                bit = zbits;
                bit.b[0] = regu;
                return bit;
        case D_ADDR:
                a->type = a->index;
                bit = mkvar(r, a);
                setaddrs(bit);
                a->type = t;
                ostats.naddr++;
                goto none;
        case D_EXTERN:
        case D_STATIC:
        case D_PARAM:
        case D_AUTO:
                n = t;
                break;
        }
        node = a->node;
        if(node == N || node->op != ONAME || node->orig == N)
                goto none;
        node = node->orig;
        if(node->orig != node)
                fatal("%D: bad node", a);
        if(node->sym == S || node->sym->name[0] == '.')
                goto none;
        et = a->etype;
        o = a->offset;
        w = a->width;
        if(w < 0)
                fatal("bad width %lld for %D", w, a);
        flag = 0;
        for(i=0; i<nvar; i++) {
                v = var+i;
                if(v->node == node && v->name == n) {
                        if(v->offset == o)
                        if(v->etype == et)
                        if(v->width == w)
                                return blsh(i);
                        // if they overlaps, disable both
                        if(overlap(v->offset, v->width, o, w)) {
//                              print("disable overlap %s %d %d %d %d, %E != %E\n", s->name, v->offset, v->width, o, w, v->etype, et);
                                v->addr = 1;
                                flag = 1;
                        }
                }
        }
        switch(et) {
        case 0:
        case TFUNC:
                goto none;
        }
        if(nvar >= NVAR) {
                if(debug['w'] > 1 && node != N)
                        fatal("variable not optimized: %#N", node);
                
                // If we're not tracking a word in a variable, mark the rest as
                // having its address taken, so that we keep the whole thing
                // live at all calls. otherwise we might optimize away part of
                // a variable but not all of it.
                for(i=0; i<nvar; i++) {
                        v = var+i;
                        if(v->node == node)
                                v->addr = 1;
                }
                goto none;
        }
        i = nvar;
        nvar++;
        v = var+i;
        v->offset = o;
        v->name = n;
        v->etype = et;
        v->width = w;
        v->addr = flag;         // funny punning
        v->node = node;
        
        // node->opt is the head of a linked list
        // of Vars within the given Node, so that
        // we can start at a Var and find all the other
        // Vars in the same Go variable.
        v->nextinnode = node->opt;
        node->opt = v;
        bit = blsh(i);
        if(n == D_EXTERN || n == D_STATIC)
                for(z=0; z<BITS; z++)
                        externs.b[z] |= bit.b[z];
        if(n == D_PARAM)
                for(z=0; z<BITS; z++)
                        params.b[z] |= bit.b[z];
        if(node->class == PPARAM)
                for(z=0; z<BITS; z++)
                        ivar.b[z] |= bit.b[z];
        if(node->class == PPARAMOUT)
                for(z=0; z<BITS; z++)
                        ovar.b[z] |= bit.b[z];
        // Treat values with their address taken as live at calls,
        // because the garbage collector's liveness analysis in ../gc/plive.c does.
        // These must be consistent or else we will elide stores and the garbage
        // collector will see uninitialized data.
        // The typical case where our own analysis is out of sync is when the
        // node appears to have its address taken but that code doesn't actually
        // get generated and therefore doesn't show up as an address being
        // taken when we analyze the instruction stream.
        // One instance of this case is when a closure uses the same name as
        // an outer variable for one of its own variables declared with :=.
        // The parser flags the outer variable as possibly shared, and therefore
        // sets addrtaken, even though it ends up not being actually shared.
        // If we were better about _ elision, _ = &x would suffice too.
        // The broader := in a closure problem is mentioned in a comment in
        // closure.c:/^typecheckclosure and dcl.c:/^oldname.
        if(node->addrtaken)
                v->addr = 1;
        // Disable registerization for globals, because:
        // (1) we might panic at any time and we want the recovery code
        // to see the latest values (issue 1304).
        // (2) we don't know what pointers might point at them and we want
        // loads via those pointers to see updated values and vice versa (issue 7995).
        //
        // Disable registerization for results if using defer, because the deferred func
        // might recover and return, causing the current values to be used.
        if(node->class == PEXTERN || (hasdefer && node->class == PPARAMOUT))
                v->addr = 1;
        if(debug['R'])
                print("bit=%2d et=%2E w=%lld+%lld %#N %D flag=%d\n", i, et, o, w, node, a, v->addr);
        ostats.nvar++;
        return bit;
none:
        return zbits;
}
void
prop(Reg *r, Bits ref, Bits cal)
{
        Reg *r1, *r2;
        int z, i, j;
        Var *v, *v1;
        for(r1 = r; r1 != R; r1 = (Reg*)r1->f.p1) {
                for(z=0; z<BITS; z++) {
                        ref.b[z] |= r1->refahead.b[z];
                        if(ref.b[z] != r1->refahead.b[z]) {
                                r1->refahead.b[z] = ref.b[z];
                                change++;
                        }
                        cal.b[z] |= r1->calahead.b[z];
                        if(cal.b[z] != r1->calahead.b[z]) {
                                r1->calahead.b[z] = cal.b[z];
                                change++;
                        }
                }
                switch(r1->f.prog->as) {
                case ACALL:
                        if(noreturn(r1->f.prog))
                                break;
                        // Mark all input variables (ivar) as used, because that's what the
                        // liveness bitmaps say. The liveness bitmaps say that so that a
                        // panic will not show stale values in the parameter dump.
                        // Mark variables with a recent VARDEF (r1->act) as used,
                        // so that the optimizer flushes initializations to memory,
                        // so that if a garbage collection happens during this CALL,
                        // the collector will see initialized memory. Again this is to
                        // match what the liveness bitmaps say.
                        for(z=0; z<BITS; z++) {
                                cal.b[z] |= ref.b[z] | externs.b[z] | ivar.b[z] | r1->act.b[z];
                                ref.b[z] = 0;
                        }
                        
                        // cal.b is the current approximation of what's live across the call.
                        // Every bit in cal.b is a single stack word. For each such word,
                        // find all the other tracked stack words in the same Go variable
                        // (struct/slice/string/interface) and mark them live too.
                        // This is necessary because the liveness analysis for the garbage
                        // collector works at variable granularity, not at word granularity.
                        // It is fundamental for slice/string/interface: the garbage collector
                        // needs the whole value, not just some of the words, in order to
                        // interpret the other bits correctly. Specifically, slice needs a consistent
                        // ptr and cap, string needs a consistent ptr and len, and interface
                        // needs a consistent type word and data word.
                        for(z=0; z<BITS; z++) {
                                if(cal.b[z] == 0)
                                        continue;
                                for(i=0; i<32; i++) {
                                        if(z*32+i >= nvar || ((cal.b[z]>>i)&1) == 0)
                                                continue;
                                        v = var+z*32+i;
                                        if(v->node->opt == nil) // v represents fixed register, not Go variable
                                                continue;
                                        // v->node->opt is the head of a linked list of Vars
                                        // corresponding to tracked words from the Go variable v->node.
                                        // Walk the list and set all the bits.
                                        // For a large struct this could end up being quadratic:
                                        // after the first setting, the outer loop (for z, i) would see a 1 bit
                                        // for all of the remaining words in the struct, and for each such
                                        // word would go through and turn on all the bits again.
                                        // To avoid the quadratic behavior, we only turn on the bits if
                                        // v is the head of the list or if the head's bit is not yet turned on.
                                        // This will set the bits at most twice, keeping the overall loop linear.
                                        v1 = v->node->opt;
                                        j = v1 - var;
                                        if(v == v1 || ((cal.b[j/32]>>(j&31))&1) == 0) {
                                                for(; v1 != nil; v1 = v1->nextinnode) {
                                                        j = v1 - var;
                                                        cal.b[j/32] |= 1<<(j&31);
                                                }
                                        }
                                }
                        }
                        break;
                case ATEXT:
                        for(z=0; z<BITS; z++) {
                                cal.b[z] = 0;
                                ref.b[z] = 0;
                        }
                        break;
                case ARET:
                        for(z=0; z<BITS; z++) {
                                cal.b[z] = externs.b[z] | ovar.b[z];
                                ref.b[z] = 0;
                        }
                        break;
                }
                for(z=0; z<BITS; z++) {
                        ref.b[z] = (ref.b[z] & ~r1->set.b[z]) |
                                r1->use1.b[z] | r1->use2.b[z];
                        cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]);
                        r1->refbehind.b[z] = ref.b[z];
                        r1->calbehind.b[z] = cal.b[z];
                }
                if(r1->f.active)
                        break;
                r1->f.active = 1;
        }
        for(; r != r1; r = (Reg*)r->f.p1)
                for(r2 = (Reg*)r->f.p2; r2 != R; r2 = (Reg*)r2->f.p2link)
                        prop(r2, r->refbehind, r->calbehind);
}
void
synch(Reg *r, Bits dif)
{
        Reg *r1;
        int z;
        for(r1 = r; r1 != R; r1 = (Reg*)r1->f.s1) {
                for(z=0; z<BITS; z++) {
                        dif.b[z] = (dif.b[z] &
                                ~(~r1->refbehind.b[z] & r1->refahead.b[z])) |
                                        r1->set.b[z] | r1->regdiff.b[z];
                        if(dif.b[z] != r1->regdiff.b[z]) {
                                r1->regdiff.b[z] = dif.b[z];
                                change++;
                        }
                }
                if(r1->f.active)
                        break;
                r1->f.active = 1;
                for(z=0; z<BITS; z++)
                        dif.b[z] &= ~(~r1->calbehind.b[z] & r1->calahead.b[z]);
                if(r1->f.s2 != nil)
                        synch((Reg*)r1->f.s2, dif);
        }
}
uint32
allreg(uint32 b, Rgn *r)
{
        Var *v;
        int i;
        v = var + r->varno;
        r->regno = 0;
        switch(v->etype) {
        default:
                fatal("unknown etype %d/%E", bitno(b), v->etype);
                break;
        case TINT8:
        case TUINT8:
        case TINT16:
        case TUINT16:
        case TINT32:
        case TUINT32:
        case TINT64:
        case TUINT64:
        case TINT:
        case TUINT:
        case TUINTPTR:
        case TBOOL:
        case TPTR32:
        case TPTR64:
                i = BtoR(~b);
                if(i && r->cost > 0) {
                        r->regno = i;
                        return RtoB(i);
                }
                break;
        case TFLOAT32:
        case TFLOAT64:
                i = BtoF(~b);
                if(i && r->cost > 0) {
                        r->regno = i;
                        return FtoB(i);
                }
                break;
        }
        return 0;
}
void
paint1(Reg *r, int bn)
{
        Reg *r1;
        int z;
        uint32 bb;
        z = bn/32;
        bb = 1L<<(bn%32);
        if(r->act.b[z] & bb)
                return;
        for(;;) {
                if(!(r->refbehind.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.p1;
                if(r1 == R)
                        break;
                if(!(r1->refahead.b[z] & bb))
                        break;
                if(r1->act.b[z] & bb)
                        break;
                r = r1;
        }
        if(LOAD(r) & ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z])) & bb) {
                change -= CLOAD * r->f.loop;
        }
        for(;;) {
                r->act.b[z] |= bb;
                if(r->f.prog->as != ANOP) { // don't give credit for NOPs
                        if(r->use1.b[z] & bb)
                                change += CREF * r->f.loop;
                        if((r->use2.b[z]|r->set.b[z]) & bb)
                                change += CREF * r->f.loop;
                }
                if(STORE(r) & r->regdiff.b[z] & bb) {
                        change -= CLOAD * r->f.loop;
                }
                if(r->refbehind.b[z] & bb)
                        for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
                                if(r1->refahead.b[z] & bb)
                                        paint1(r1, bn);
                if(!(r->refahead.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.s2;
                if(r1 != R)
                        if(r1->refbehind.b[z] & bb)
                                paint1(r1, bn);
                r = (Reg*)r->f.s1;
                if(r == R)
                        break;
                if(r->act.b[z] & bb)
                        break;
                if(!(r->refbehind.b[z] & bb))
                        break;
        }
}
uint32
regset(Reg *r, uint32 bb)
{
        uint32 b, set;
        Adr v;
        int c;
        set = 0;
        v = zprog.from;
        while(b = bb & ~(bb-1)) {
                v.type = b & 0xFFFF? BtoR(b): BtoF(b);
                if(v.type == 0)
                        fatal("zero v.type for %#ux", b);
                c = copyu(r->f.prog, &v, nil);
                if(c == 3)
                        set |= b;
                bb &= ~b;
        }
        return set;
}
uint32
reguse(Reg *r, uint32 bb)
{
        uint32 b, set;
        Adr v;
        int c;
        set = 0;
        v = zprog.from;
        while(b = bb & ~(bb-1)) {
                v.type = b & 0xFFFF? BtoR(b): BtoF(b);
                c = copyu(r->f.prog, &v, nil);
                if(c == 1 || c == 2 || c == 4)
                        set |= b;
                bb &= ~b;
        }
        return set;
}
uint32
paint2(Reg *r, int bn)
{
        Reg *r1;
        int z;
        uint32 bb, vreg, x;
        z = bn/32;
        bb = 1L << (bn%32);
        vreg = regbits;
        if(!(r->act.b[z] & bb))
                return vreg;
        for(;;) {
                if(!(r->refbehind.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.p1;
                if(r1 == R)
                        break;
                if(!(r1->refahead.b[z] & bb))
                        break;
                if(!(r1->act.b[z] & bb))
                        break;
                r = r1;
        }
        for(;;) {
                r->act.b[z] &= ~bb;
                vreg |= r->regu;
                if(r->refbehind.b[z] & bb)
                        for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
                                if(r1->refahead.b[z] & bb)
                                        vreg |= paint2(r1, bn);
                if(!(r->refahead.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.s2;
                if(r1 != R)
                        if(r1->refbehind.b[z] & bb)
                                vreg |= paint2(r1, bn);
                r = (Reg*)r->f.s1;
                if(r == R)
                        break;
                if(!(r->act.b[z] & bb))
                        break;
                if(!(r->refbehind.b[z] & bb))
                        break;
        }
        bb = vreg;
        for(; r; r=(Reg*)r->f.s1) {
                x = r->regu & ~bb;
                if(x) {
                        vreg |= reguse(r, x);
                        bb |= regset(r, x);
                }
        }
        return vreg;
}
void
paint3(Reg *r, int bn, int32 rb, int rn)
{
        Reg *r1;
        Prog *p;
        int z;
        uint32 bb;
        z = bn/32;
        bb = 1L << (bn%32);
        if(r->act.b[z] & bb)
                return;
        for(;;) {
                if(!(r->refbehind.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.p1;
                if(r1 == R)
                        break;
                if(!(r1->refahead.b[z] & bb))
                        break;
                if(r1->act.b[z] & bb)
                        break;
                r = r1;
        }
        if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb)
                addmove(r, bn, rn, 0);
        for(;;) {
                r->act.b[z] |= bb;
                p = r->f.prog;
                if(r->use1.b[z] & bb) {
                        if(debug['R'] && debug['v'])
                                print("%P", p);
                        addreg(&p->from, rn);
                        if(debug['R'] && debug['v'])
                                print(" ===change== %P\n", p);
                }
                if((r->use2.b[z]|r->set.b[z]) & bb) {
                        if(debug['R'] && debug['v'])
                                print("%P", p);
                        addreg(&p->to, rn);
                        if(debug['R'] && debug['v'])
                                print(" ===change== %P\n", p);
                }
                if(STORE(r) & r->regdiff.b[z] & bb)
                        addmove(r, bn, rn, 1);
                r->regu |= rb;
                if(r->refbehind.b[z] & bb)
                        for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
                                if(r1->refahead.b[z] & bb)
                                        paint3(r1, bn, rb, rn);
                if(!(r->refahead.b[z] & bb))
                        break;
                r1 = (Reg*)r->f.s2;
                if(r1 != R)
                        if(r1->refbehind.b[z] & bb)
                                paint3(r1, bn, rb, rn);
                r = (Reg*)r->f.s1;
                if(r == R)
                        break;
                if(r->act.b[z] & bb)
                        break;
                if(!(r->refbehind.b[z] & bb))
                        break;
        }
}
void
addreg(Adr *a, int rn)
{
        a->sym = nil;
        a->offset = 0;
        a->type = rn;
        ostats.ncvtreg++;
}
int32
RtoB(int r)
{
        if(r < D_AX || r > D_R15)
                return 0;
        return 1L << (r-D_AX);
}
int
BtoR(int32 b)
{
        b &= 0xffffL;
        if(nacl)
                b &= ~((1<<(D_BP-D_AX)) | (1<<(D_R15-D_AX)));
        if(b == 0)
                return 0;
        return bitno(b) + D_AX;
}
/*
 *      bit     reg
 *      16      X0
 *      ...
 *      31      X15
 */
int32
FtoB(int f)
{
        if(f < D_X0 || f > D_X15)
                return 0;
        return 1L << (f - D_X0 + 16);
}
int
BtoF(int32 b)
{
        b &= 0xFFFF0000L;
        if(b == 0)
                return 0;
        return bitno(b) - 16 + D_X0;
}
void
dumpone(Flow *f, int isreg)
{
        int z;
        Bits bit;
        Reg *r;
        print("%d:%P", f->loop, f->prog);
        if(isreg) {     
                r = (Reg*)f;
                for(z=0; z<BITS; z++)
                        bit.b[z] =
                                r->set.b[z] |
                                r->use1.b[z] |
                                r->use2.b[z] |
                                r->refbehind.b[z] |
                                r->refahead.b[z] |
                                r->calbehind.b[z] |
                                r->calahead.b[z] |
                                r->regdiff.b[z] |
                                r->act.b[z] |
                                        0;
                if(bany(&bit)) {
                        print("\t");
                        if(bany(&r->set))
                                print(" s:%Q", r->set);
                        if(bany(&r->use1))
                                print(" u1:%Q", r->use1);
                        if(bany(&r->use2))
                                print(" u2:%Q", r->use2);
                        if(bany(&r->refbehind))
                                print(" rb:%Q ", r->refbehind);
                        if(bany(&r->refahead))
                                print(" ra:%Q ", r->refahead);
                        if(bany(&r->calbehind))
                                print(" cb:%Q ", r->calbehind);
                        if(bany(&r->calahead))
                                print(" ca:%Q ", r->calahead);
                        if(bany(&r->regdiff))
                                print(" d:%Q ", r->regdiff);
                        if(bany(&r->act))
                                print(" a:%Q ", r->act);
                }
        }
        print("\n");
}
void
dumpit(char *str, Flow *r0, int isreg)
{
        Flow *r, *r1;
        print("\n%s\n", str);
        for(r = r0; r != nil; r = r->link) {
                dumpone(r, isreg);
                r1 = r->p2;
                if(r1 != nil) {
                        print(" pred:");
                        for(; r1 != nil; r1 = r1->p2link)
                                print(" %.4ud", (int)r1->prog->pc);
                        print("\n");
                }
//              r1 = r->s1;
//              if(r1 != R) {
//                      print(" succ:");
//                      for(; r1 != R; r1 = r1->s1)
//                              print(" %.4ud", (int)r1->prog->pc);
//                      print("\n");
//              }
        }
}