root/src/pkg/runtime/race_amd64.s

/* [<][>][^][v][top][bottom][index][help] */
// Copyright 2013 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build race

#include "zasm_GOOS_GOARCH.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"

// The following thunks allow calling the gcc-compiled race runtime directly
// from Go code without going all the way through cgo.
// First, it's much faster (up to 50% speedup for real Go programs).
// Second, it eliminates race-related special cases from cgocall and scheduler.
// Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go.

// A brief recap of the amd64 calling convention.
// Arguments are passed in DI, SI, DX, CX, R8, R9, the rest is on stack.
// Callee-saved registers are: BX, BP, R12-R15.
// SP must be 16-byte aligned.
// On Windows:
// Arguments are passed in CX, DX, R8, R9, the rest is on stack.
// Callee-saved registers are: BX, BP, DI, SI, R12-R15.
// SP must be 16-byte aligned. Windows also requires "stack-backing" for the 4 register arguments:
// http://msdn.microsoft.com/en-us/library/ms235286.aspx
// We do not do this, because it seems to be intended for vararg/unprototyped functions.
// Gcc-compiled race runtime does not try to use that space.

#ifdef GOOS_windows
#define RARG0 CX
#define RARG1 DX
#define RARG2 R8
#define RARG3 R9
#else
#define RARG0 DI
#define RARG1 SI
#define RARG2 DX
#define RARG3 CX
#endif

// func runtime·raceread(addr uintptr)
// Called from instrumented code.
TEXT    runtime·raceread(SB), NOSPLIT, $0-8
        MOVQ    addr+0(FP), RARG1
        MOVQ    (SP), RARG2
        // void __tsan_read(ThreadState *thr, void *addr, void *pc);
        MOVQ    $__tsan_read(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·RaceRead(addr uintptr)
TEXT    runtime·RaceRead(SB), NOSPLIT, $0-8
        // This needs to be a tail call, because raceread reads caller pc.
        JMP     runtime·raceread(SB)

// void runtime·racereadpc(void *addr, void *callpc, void *pc)
TEXT    runtime·racereadpc(SB), NOSPLIT, $0-24
        MOVQ    addr+0(FP), RARG1
        MOVQ    callpc+8(FP), RARG2
        MOVQ    pc+16(FP), RARG3
        // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
        MOVQ    $__tsan_read_pc(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·racewrite(addr uintptr)
// Called from instrumented code.
TEXT    runtime·racewrite(SB), NOSPLIT, $0-8
        MOVQ    addr+0(FP), RARG1
        MOVQ    (SP), RARG2
        // void __tsan_write(ThreadState *thr, void *addr, void *pc);
        MOVQ    $__tsan_write(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·RaceWrite(addr uintptr)
TEXT    runtime·RaceWrite(SB), NOSPLIT, $0-8
        // This needs to be a tail call, because racewrite reads caller pc.
        JMP     runtime·racewrite(SB)

// void runtime·racewritepc(void *addr, void *callpc, void *pc)
TEXT    runtime·racewritepc(SB), NOSPLIT, $0-24
        MOVQ    addr+0(FP), RARG1
        MOVQ    callpc+8(FP), RARG2
        MOVQ    cp+16(FP), RARG3
        // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc);
        MOVQ    $__tsan_write_pc(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·racereadrange(addr, size uintptr)
// Called from instrumented code.
TEXT    runtime·racereadrange(SB), NOSPLIT, $0-16
        MOVQ    addr+0(FP), RARG1
        MOVQ    size+8(FP), RARG2
        MOVQ    (SP), RARG3
        // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
        MOVQ    $__tsan_read_range(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·RaceReadRange(addr, size uintptr)
TEXT    runtime·RaceReadRange(SB), NOSPLIT, $0-16
        // This needs to be a tail call, because racereadrange reads caller pc.
        JMP     runtime·racereadrange(SB)

// void runtime·racereadrangepc1(void *addr, uintptr sz, void *pc)
TEXT    runtime·racereadrangepc1(SB), NOSPLIT, $0-24
        MOVQ    addr+0(FP), RARG1
        MOVQ    size+8(FP), RARG2
        MOVQ    pc+16(FP), RARG3
        // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc);
        MOVQ    $__tsan_read_range(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·racewriterange(addr, size uintptr)
// Called from instrumented code.
TEXT    runtime·racewriterange(SB), NOSPLIT, $0-16
        MOVQ    addr+0(FP), RARG1
        MOVQ    size+8(FP), RARG2
        MOVQ    (SP), RARG3
        // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
        MOVQ    $__tsan_write_range(SB), AX
        JMP     racecalladdr<>(SB)

// func runtime·RaceWriteRange(addr, size uintptr)
TEXT    runtime·RaceWriteRange(SB), NOSPLIT, $0-16
        // This needs to be a tail call, because racewriterange reads caller pc.
        JMP     runtime·racewriterange(SB)

// void runtime·racewriterangepc1(void *addr, uintptr sz, void *pc)
TEXT    runtime·racewriterangepc1(SB), NOSPLIT, $0-24
        MOVQ    addr+0(FP), RARG1
        MOVQ    size+8(FP), RARG2
        MOVQ    pc+16(FP), RARG3
        // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc);
        MOVQ    $__tsan_write_range(SB), AX
        JMP     racecalladdr<>(SB)

// If addr (RARG1) is out of range, do nothing.
// Otherwise, setup goroutine context and invoke racecall. Other arguments already set.
TEXT    racecalladdr<>(SB), NOSPLIT, $0-0
        get_tls(R12)
        MOVQ    g(R12), R14
        MOVQ    g_racectx(R14), RARG0   // goroutine context
        // Check that addr is within [arenastart, arenaend) or within [noptrdata, enoptrbss).
        CMPQ    RARG1, runtime·racearenastart(SB)
        JB      racecalladdr_data
        CMPQ    RARG1, runtime·racearenaend(SB)
        JB      racecalladdr_call
racecalladdr_data:
        CMPQ    RARG1, $noptrdata(SB)
        JB      racecalladdr_ret
        CMPQ    RARG1, $enoptrbss(SB)
        JAE     racecalladdr_ret
racecalladdr_call:
        MOVQ    AX, AX          // w/o this 6a miscompiles this function
        JMP     racecall<>(SB)
racecalladdr_ret:
        RET

// func runtime·racefuncenter(pc uintptr)
// Called from instrumented code.
TEXT    runtime·racefuncenter(SB), NOSPLIT, $0-8
        MOVQ    DX, R15         // save function entry context (for closures)
        get_tls(R12)
        MOVQ    g(R12), R14
        MOVQ    g_racectx(R14), RARG0   // goroutine context
        MOVQ    callpc+0(FP), RARG1
        // void __tsan_func_enter(ThreadState *thr, void *pc);
        MOVQ    $__tsan_func_enter(SB), AX
        CALL    racecall<>(SB)
        MOVQ    R15, DX // restore function entry context
        RET

// func runtime·racefuncexit()
// Called from instrumented code.
TEXT    runtime·racefuncexit(SB), NOSPLIT, $0-0
        get_tls(R12)
        MOVQ    g(R12), R14
        MOVQ    g_racectx(R14), RARG0   // goroutine context
        // void __tsan_func_exit(ThreadState *thr);
        MOVQ    $__tsan_func_exit(SB), AX
        JMP     racecall<>(SB)

// void runtime·racecall(void(*f)(...), ...)
// Calls C function f from race runtime and passes up to 4 arguments to it.
// The arguments are never heap-object-preserving pointers, so we pretend there are no arguments.
TEXT    runtime·racecall(SB), NOSPLIT, $0-0
        MOVQ    fn+0(FP), AX
        MOVQ    arg0+8(FP), RARG0
        MOVQ    arg1+16(FP), RARG1
        MOVQ    arg2+24(FP), RARG2
        MOVQ    arg3+32(FP), RARG3
        JMP     racecall<>(SB)

// Switches SP to g0 stack and calls (AX). Arguments already set.
TEXT    racecall<>(SB), NOSPLIT, $0-0
        get_tls(R12)
        MOVQ    m(R12), R13
        MOVQ    g(R12), R14
        // Switch to g0 stack.
        MOVQ    SP, R12         // callee-saved, preserved across the CALL
        MOVQ    m_g0(R13), R10
        CMPQ    R10, R14
        JE      racecall_cont   // already on g0
        MOVQ    (g_sched+gobuf_sp)(R10), SP
racecall_cont:
        ANDQ    $~15, SP        // alignment for gcc ABI
        CALL    AX
        MOVQ    R12, SP
        RET

// C->Go callback thunk that allows to call runtime·racesymbolize from C code.
// Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g.
// The overall effect of Go->C->Go call chain is similar to that of mcall.
TEXT    runtime·racesymbolizethunk(SB), NOSPLIT, $56-8
        // Save callee-saved registers (Go code won't respect that).
        // This is superset of darwin/linux/windows registers.
        PUSHQ   BX
        PUSHQ   BP
        PUSHQ   DI
        PUSHQ   SI
        PUSHQ   R12
        PUSHQ   R13
        PUSHQ   R14
        PUSHQ   R15
        // Set g = g0.
        get_tls(R12)
        MOVQ    m(R12), R13
        MOVQ    m_g0(R13), R14
        MOVQ    R14, g(R12)     // g = m->g0
        MOVQ    RARG0, 0(SP)    // func arg
        CALL    runtime·racesymbolize(SB)
        // All registers are smashed after Go code, reload.
        get_tls(R12)
        MOVQ    m(R12), R13
        MOVQ    m_curg(R13), R14
        MOVQ    R14, g(R12)     // g = m->curg
        // Restore callee-saved registers.
        POPQ    R15
        POPQ    R14
        POPQ    R13
        POPQ    R12
        POPQ    SI
        POPQ    DI
        POPQ    BP
        POPQ    BX
        RET

/* [<][>][^][v][top][bottom][index][help] */