This source file includes following definitions.
- bTextureCache
- toString
- init
- process
- deinit
#include "test_precomp.hpp"
template <class T>
TestResize<T>::TestResize(std::string testName_, NCVTestSourceProvider<T> &src_,
Ncv32u width_, Ncv32u height_, Ncv32u scaleFactor_, NcvBool bTextureCache_)
:
NCVTestProvider(testName_),
src(src_),
width(width_),
height(height_),
scaleFactor(scaleFactor_),
bTextureCache(bTextureCache_)
{
}
template <class T>
bool TestResize<T>::toString(std::ofstream &strOut)
{
strOut << "sizeof(T)=" << sizeof(T) << std::endl;
strOut << "width=" << width << std::endl;
strOut << "scaleFactor=" << scaleFactor << std::endl;
strOut << "bTextureCache=" << bTextureCache << std::endl;
return true;
}
template <class T>
bool TestResize<T>::init()
{
return true;
}
template <class T>
bool TestResize<T>::process()
{
NCVStatus ncvStat;
bool rcode = false;
Ncv32s smallWidth = this->width / this->scaleFactor;
Ncv32s smallHeight = this->height / this->scaleFactor;
if (smallWidth == 0 || smallHeight == 0)
{
return true;
}
NcvSize32u srcSize(this->width, this->height);
NCVMatrixAlloc<T> d_img(*this->allocatorGPU.get(), this->width, this->height);
ncvAssertReturn(d_img.isMemAllocated(), false);
NCVMatrixAlloc<T> h_img(*this->allocatorCPU.get(), this->width, this->height);
ncvAssertReturn(h_img.isMemAllocated(), false);
NCVMatrixAlloc<T> d_small(*this->allocatorGPU.get(), smallWidth, smallHeight);
ncvAssertReturn(d_small.isMemAllocated(), false);
NCVMatrixAlloc<T> h_small(*this->allocatorCPU.get(), smallWidth, smallHeight);
ncvAssertReturn(h_small.isMemAllocated(), false);
NCVMatrixAlloc<T> h_small_d(*this->allocatorCPU.get(), smallWidth, smallHeight);
ncvAssertReturn(h_small_d.isMemAllocated(), false);
NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
NCV_SKIP_COND_BEGIN
ncvAssertReturn(this->src.fill(h_img), false);
NCV_SKIP_COND_END
ncvStat = h_img.copySolid(d_img, 0);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
NCV_SKIP_COND_BEGIN
if (sizeof(T) == sizeof(Ncv32u))
{
ncvStat = nppiStDecimate_32u_C1R((Ncv32u *)d_img.ptr(), d_img.pitch(),
(Ncv32u *)d_small.ptr(), d_small.pitch(),
srcSize, this->scaleFactor,
this->bTextureCache);
}
else if (sizeof(T) == sizeof(Ncv64u))
{
ncvStat = nppiStDecimate_64u_C1R((Ncv64u *)d_img.ptr(), d_img.pitch(),
(Ncv64u *)d_small.ptr(), d_small.pitch(),
srcSize, this->scaleFactor,
this->bTextureCache);
}
else
{
ncvAssertPrintReturn(false, "Incorrect downsample test instance", false);
}
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
NCV_SKIP_COND_END
ncvStat = d_small.copySolid(h_small_d, 0);
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
NCV_SKIP_COND_BEGIN
if (sizeof(T) == sizeof(Ncv32u))
{
ncvStat = nppiStDecimate_32u_C1R_host((Ncv32u *)h_img.ptr(), h_img.pitch(),
(Ncv32u *)h_small.ptr(), h_small.pitch(),
srcSize, this->scaleFactor);
}
else if (sizeof(T) == sizeof(Ncv64u))
{
ncvStat = nppiStDecimate_64u_C1R_host((Ncv64u *)h_img.ptr(), h_img.pitch(),
(Ncv64u *)h_small.ptr(), h_small.pitch(),
srcSize, this->scaleFactor);
}
else
{
ncvAssertPrintReturn(false, "Incorrect downsample test instance", false);
}
ncvAssertReturn(ncvStat == NPPST_SUCCESS, false);
NCV_SKIP_COND_END
bool bLoopVirgin = true;
NCV_SKIP_COND_BEGIN
for (Ncv32u i=0; bLoopVirgin && i < h_small.height(); i++)
{
for (Ncv32u j=0; bLoopVirgin && j < h_small.width(); j++)
{
if (h_small.ptr()[h_small.stride()*i+j] != h_small_d.ptr()[h_small_d.stride()*i+j])
{
bLoopVirgin = false;
}
}
}
NCV_SKIP_COND_END
if (bLoopVirgin)
{
rcode = true;
}
return rcode;
}
template <class T>
bool TestResize<T>::deinit()
{
return true;
}
template class TestResize<Ncv32u>;
template class TestResize<Ncv64u>;