root/modules/features2d/src/bagofwords.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. add
  2. getDescriptors
  3. descriptorsCount
  4. clear
  5. flags
  6. cluster
  7. cluster
  8. dmatcher
  9. setVocabulary
  10. getVocabulary
  11. compute
  12. descriptorSize
  13. descriptorType
  14. compute

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv
{

BOWTrainer::BOWTrainer() : size(0)
{}

BOWTrainer::~BOWTrainer()
{}

void BOWTrainer::add( const Mat& _descriptors )
{
    CV_Assert( !_descriptors.empty() );
    if( !descriptors.empty() )
    {
        CV_Assert( descriptors[0].cols == _descriptors.cols );
        CV_Assert( descriptors[0].type() == _descriptors.type() );
        size += _descriptors.rows;
    }
    else
    {
        size = _descriptors.rows;
    }

    descriptors.push_back(_descriptors);
}

const std::vector<Mat>& BOWTrainer::getDescriptors() const
{
    return descriptors;
}

int BOWTrainer::descriptorsCount() const
{
    return descriptors.empty() ? 0 : size;
}

void BOWTrainer::clear()
{
    descriptors.clear();
}

BOWKMeansTrainer::BOWKMeansTrainer( int _clusterCount, const TermCriteria& _termcrit,
                                    int _attempts, int _flags ) :
    clusterCount(_clusterCount), termcrit(_termcrit), attempts(_attempts), flags(_flags)
{}

Mat BOWKMeansTrainer::cluster() const
{
    CV_Assert( !descriptors.empty() );

    int descCount = 0;
    for( size_t i = 0; i < descriptors.size(); i++ )
        descCount += descriptors[i].rows;

    Mat mergedDescriptors( descCount, descriptors[0].cols, descriptors[0].type() );
    for( size_t i = 0, start = 0; i < descriptors.size(); i++ )
    {
        Mat submut = mergedDescriptors.rowRange((int)start, (int)(start + descriptors[i].rows));
        descriptors[i].copyTo(submut);
        start += descriptors[i].rows;
    }
    return cluster( mergedDescriptors );
}

BOWKMeansTrainer::~BOWKMeansTrainer()
{}

Mat BOWKMeansTrainer::cluster( const Mat& _descriptors ) const
{
    Mat labels, vocabulary;
    kmeans( _descriptors, clusterCount, labels, termcrit, attempts, flags, vocabulary );
    return vocabulary;
}


BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& _dextractor,
                                                      const Ptr<DescriptorMatcher>& _dmatcher ) :
    dextractor(_dextractor), dmatcher(_dmatcher)
{}

BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& _dmatcher ) :
    dmatcher(_dmatcher)
{}

BOWImgDescriptorExtractor::~BOWImgDescriptorExtractor()
{}

void BOWImgDescriptorExtractor::setVocabulary( const Mat& _vocabulary )
{
    dmatcher->clear();
    vocabulary = _vocabulary;
    dmatcher->add( std::vector<Mat>(1, vocabulary) );
}

const Mat& BOWImgDescriptorExtractor::getVocabulary() const
{
    return vocabulary;
}

void BOWImgDescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
                                         std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors )
{
    imgDescriptor.release();

    if( keypoints.empty() )
        return;

    // Compute descriptors for the image.
    Mat _descriptors;
    dextractor->compute( image, keypoints, _descriptors );

    compute( _descriptors, imgDescriptor, pointIdxsOfClusters );

    // Add the descriptors of image keypoints
    if (descriptors) {
        *descriptors = _descriptors.clone();
    }
}

int BOWImgDescriptorExtractor::descriptorSize() const
{
    return vocabulary.empty() ? 0 : vocabulary.rows;
}

int BOWImgDescriptorExtractor::descriptorType() const
{
    return CV_32FC1;
}

void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, OutputArray _imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters )
{
    CV_Assert( !vocabulary.empty() );

    int clusterCount = descriptorSize(); // = vocabulary.rows

    // Match keypoint descriptors to cluster center (to vocabulary)
    std::vector<DMatch> matches;
    dmatcher->match( keypointDescriptors, matches );

    // Compute image descriptor
    if( pointIdxsOfClusters )
    {
        pointIdxsOfClusters->clear();
        pointIdxsOfClusters->resize(clusterCount);
    }

    _imgDescriptor.create(1, clusterCount, descriptorType());
    _imgDescriptor.setTo(Scalar::all(0));

    Mat imgDescriptor = _imgDescriptor.getMat();

    float *dptr = imgDescriptor.ptr<float>();
    for( size_t i = 0; i < matches.size(); i++ )
    {
        int queryIdx = matches[i].queryIdx;
        int trainIdx = matches[i].trainIdx; // cluster index
        CV_Assert( queryIdx == (int)i );

        dptr[trainIdx] = dptr[trainIdx] + 1.f;
        if( pointIdxsOfClusters )
            (*pointIdxsOfClusters)[trainIdx].push_back( queryIdx );
    }

    // Normalize image descriptor.
    imgDescriptor /= keypointDescriptors.size().height;
}

}

/* [<][>][^][v][top][bottom][index][help] */