root/modules/imgproc/src/opencl/filter2DSmall.cl

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. isBorder
  2. isBorder
  3. getBorderPixel
  4. readSrcPixelSingle
  5. readSrcPixelGroup
  6. filter2DSmall

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2014, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifdef BORDER_REPLICATE
//BORDER_REPLICATE:     aaaaaa|abcdefgh|hhhhhhh
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? (l_edge)   : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? (r_edge)-1 : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? (t_edge)   :(i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? (b_edge)-1 :(addr))
#endif

#ifdef BORDER_REFLECT
//BORDER_REFLECT:       fedcba|abcdefgh|hgfedcb
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? -(i)-1               : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? -(i)-1 : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? -(i)-1+((b_edge)<<1) : (addr))
#endif

#ifdef BORDER_REFLECT_101
//BORDER_REFLECT_101:   gfedcb|abcdefgh|gfedcba
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? -(i)                 : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? -(i)                 : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? -(i)-2+((b_edge)<<1) : (addr))
#endif

//blur function does not support BORDER_WRAP
#ifdef BORDER_WRAP
//BORDER_WRAP:          cdefgh|abcdefgh|abcdefg
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? (i)+(r_edge) : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? (i)-(r_edge) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? (i)+(b_edge) : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? (i)-(b_edge) : (addr))
#endif

#ifdef BORDER_ISOLATED
#define ISOLATED_MIN(VAL) (VAL)
#else
#define ISOLATED_MIN(VAL) 0
#endif

#ifdef EXTRA_EXTRAPOLATION // border > src image size
#ifdef BORDER_CONSTANT
// None
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        x = max(min(x, maxX - 1), minX); \
        y = max(min(y, maxY - 1), minY); \
    }
#elif defined BORDER_WRAP
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        if (x < minX) \
            x -= ((x - maxX + 1) / maxX) * maxX; \
        if (x >= maxX) \
            x %= maxX; \
        if (y < minY) \
            y -= ((y - maxY + 1) / maxY) * maxY; \
        if (y >= maxY) \
            y %= maxY; \
    }
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
#define EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, delta) \
    { \
        if (maxX - minX == 1) \
            x = minX; \
        else \
            do \
            { \
                if (x < minX) \
                    x = minX - (x - minX) - 1 + delta; \
                else \
                    x = maxX - 1 - (x - maxX) - delta; \
            } \
            while (x >= maxX || x < minX); \
        \
        if (maxY - minY == 1) \
            y = minY; \
        else \
            do \
            { \
                if (y < minY) \
                    y = minY - (y - minY) - 1 + delta; \
                else \
                    y = maxY - 1 - (y - maxY) - delta; \
            } \
            while (y >= maxY || y < minY); \
    }
#ifdef BORDER_REFLECT
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, 0)
#elif defined(BORDER_REFLECT_101) || defined(BORDER_REFLECT101)
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, 1)
#endif
#else
#error No extrapolation method
#endif
#else
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        int _row = y - ISOLATED_MIN(minY), _col = x - ISOLATED_MIN(minX); \
        _row = ADDR_H(_row, 0, maxY - ISOLATED_MIN(minY)); \
        _row = ADDR_B(_row, maxY - ISOLATED_MIN(minY), _row); \
        y = _row + ISOLATED_MIN(minY); \
        \
        _col = ADDR_L(_col, 0, maxX - ISOLATED_MIN(minX)); \
        _col = ADDR_R(_col, maxX - ISOLATED_MIN(minX), _col); \
        x = _col + ISOLATED_MIN(minX); \
    }
#endif

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif

#if cn != 3
#define loadpix(addr) *(__global const srcT *)(addr)
#define storepix(val, addr)  *(__global dstT *)(addr) = val
#define SRCSIZE (int)sizeof(srcT)
#define DSTSIZE (int)sizeof(dstT)
#else
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
#define SRCSIZE (int)sizeof(srcT1) * cn
#define DSTSIZE (int)sizeof(dstT1) * cn
#endif

#define noconvert

struct RectCoords
{
    int x1, y1, x2, y2;
};

#ifdef BORDER_ISOLATED
inline bool isBorder(const struct RectCoords bounds, int2 coord, int numPixels)
{
    return (coord.x < bounds.x1 || coord.y < bounds.y1 || coord.x + numPixels > bounds.x2 || coord.y >= bounds.y2);
}
#else
inline bool isBorder(const struct RectCoords bounds, int2 coord, int numPixels)
{
    return (coord.x < 0 || coord.y < 0 || coord.x + numPixels > bounds.x2 || coord.y >= bounds.y2);
}
#endif

inline WT getBorderPixel(const struct RectCoords bounds, int2 coord,
                  __global const uchar* srcptr, int srcstep)
{
#ifdef BORDER_CONSTANT
    return (WT)(0);
#else
    int selected_col = coord.x;
    int selected_row = coord.y;

    EXTRAPOLATE(selected_col, selected_row,
            bounds.x1, bounds.y1,
            bounds.x2, bounds.y2
        );

    coord = (int2)(selected_col, selected_row);
    __global const uchar* ptr = srcptr + mul24(coord.y, srcstep) +
                                coord.x * SRCSIZE;
    return convertToWT(loadpix(ptr));
#endif
}

inline WT readSrcPixelSingle(int2 pos, __global const uchar* srcptr,
                             int srcstep, const struct RectCoords srcCoords)
{
    if (!isBorder(srcCoords, pos, 1))
    {
        __global const uchar* ptr = srcptr + mul24(pos.y, srcstep) +
                                    pos.x * SRCSIZE;

        return convertToWT(loadpix(ptr));
    }
    else
    {
        return getBorderPixel(srcCoords, pos, srcptr, srcstep);
    }
}

#define __CAT(x, y) x##y
#define CAT(x, y) __CAT(x, y)

#define vload1(OFFSET, PTR) (*(PTR + OFFSET))
#define PX_LOAD_VEC_TYPE CAT(srcT1, PX_LOAD_VEC_SIZE)
#define PX_LOAD_FLOAT_VEC_TYPE CAT(WT1, PX_LOAD_VEC_SIZE)
//#define PX_LOAD_FLOAT_VEC_CONV CAT(convert_, PX_LOAD_FLOAT_VEC_TYPE)

#if PX_LOAD_VEC_SIZE == 1
#define PX_LOAD_FLOAT_VEC_CONV (float)
#elif PX_LOAD_VEC_SIZE == 2
#define PX_LOAD_FLOAT_VEC_CONV convert_float2
#elif PX_LOAD_VEC_SIZE == 3
#define PX_LOAD_FLOAT_VEC_CONV convert_float3
#elif PX_LOAD_VEC_SIZE == 4
#define PX_LOAD_FLOAT_VEC_CONV convert_float4
#endif

#define PX_LOAD CAT(vload, PX_LOAD_VEC_SIZE)
#define float1 float

inline PX_LOAD_FLOAT_VEC_TYPE readSrcPixelGroup(int2 pos, __global const uchar* srcptr,
                                                int srcstep, const struct RectCoords srcCoords)
{
    __global const srcT1* ptr = (__global const srcT1*)
                                (srcptr + mul24(pos.y, srcstep) +
                                 pos.x * SRCSIZE);
    return PX_LOAD_FLOAT_VEC_CONV(PX_LOAD(0, ptr));
}

// Macros to ensure unrolled loops
#define LOOP1(VAR, STMT) (STMT); (VAR)++;
#define LOOP2(VAR, STMT) LOOP1(VAR, STMT); (STMT); (VAR)++;
#define LOOP3(VAR, STMT) LOOP2(VAR, STMT); (STMT); (VAR)++;
#define LOOP4(VAR, STMT) LOOP3(VAR, STMT); (STMT); (VAR)++;
#define LOOP5(VAR, STMT) LOOP4(VAR, STMT); (STMT); (VAR)++;
#define LOOP6(VAR, STMT) LOOP5(VAR, STMT); (STMT); (VAR)++;
#define LOOP7(VAR, STMT) LOOP6(VAR, STMT); (STMT); (VAR)++;
#define LOOP8(VAR, STMT) LOOP7(VAR, STMT); (STMT); (VAR)++;
#define LOOP9(VAR, STMT) LOOP8(VAR, STMT); (STMT); (VAR)++;
#define LOOP10(VAR, STMT) LOOP9(VAR, STMT); (STMT); (VAR)++;
#define LOOP11(VAR, STMT) LOOP10(VAR, STMT); (STMT); (VAR)++;
#define LOOP12(VAR, STMT) LOOP11(VAR, STMT); (STMT); (VAR)++;
#define LOOP13(VAR, STMT) LOOP12(VAR, STMT); (STMT); (VAR)++;

#define LOOP(N, VAR, STMT) CAT(LOOP, N)((VAR), (STMT))

#define DIG(a) a,
__constant WT1 kernelData[] = { COEFF };

__kernel void filter2DSmall(__global const uchar * srcptr, int src_step, int srcOffsetX, int srcOffsetY, int srcEndX, int srcEndY,
                       __global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols, float delta)
{
    const struct RectCoords srcCoords = { srcOffsetX, srcOffsetY, srcEndX, srcEndY }; // for non-isolated border: offsetX, offsetY, wholeX, wholeY

    const int startX = get_global_id(0) * PX_PER_WI_X;
    const int startY = get_global_id(1) * PX_PER_WI_Y;

    if ((startX >= cols) || (startY >= rows))
    {
        return;
    }

    WT privateData[PX_PER_WI_Y + KERNEL_SIZE_Y - 1][PRIV_DATA_WIDTH];

    // Load all of the pixels needed for the calculation
    int py = 0;
    LOOP(PX_LOAD_Y_ITERATIONS, py,
    {
        int y = startY + py;
        int px = 0;
        LOOP(PX_LOAD_X_ITERATIONS, px,
        {
            int x = startX + (px * PX_LOAD_NUM_PX);
            int2 srcPos = (int2)(srcCoords.x1 + x - ANCHOR_X, srcCoords.y1 + y - ANCHOR_Y);

            if (!isBorder(srcCoords, srcPos, PX_LOAD_NUM_PX))
            {
                PX_LOAD_FLOAT_VEC_TYPE p = readSrcPixelGroup(srcPos, srcptr, src_step, srcCoords);
                *((PX_LOAD_FLOAT_VEC_TYPE*)&privateData[py][px * PX_LOAD_NUM_PX]) = p;
            }
            else
            {
                int lx = 0;
                LOOP(PX_LOAD_NUM_PX, lx,
                {
                    WT p = readSrcPixelSingle(srcPos, srcptr, src_step, srcCoords);
                    *((WT*)&privateData[py][px * PX_LOAD_NUM_PX + lx]) = p;
                    srcPos.x++;
                });
            }
        });
    });
    // Use the stored pixels to compute the results
    py = 0;
    LOOP(PX_PER_WI_Y, py,
    {
        int y = startY + py;
        int px = 0;
        LOOP(PX_PER_WI_X, px,
        {
            int x = startX + px;
            WT total_sum = 0;
            int sy = 0;
            int kernelIndex = 0;
            LOOP(KERNEL_SIZE_Y, sy,
            {
                int sx = 0;
                LOOP(KERNEL_SIZE_X, sx,
                {
                    total_sum = mad(kernelData[kernelIndex++], privateData[py + sy][px + sx], total_sum);
                });
            });

            __global dstT* dstPtr = (__global dstT*)(dstptr + y * dst_step + dst_offset + x * DSTSIZE); // Pointer can be out of bounds!
            storepix(convertToDstT(total_sum + (WT)(delta)), dstPtr);
        });
    });
}

/* [<][>][^][v][top][bottom][index][help] */