root/modules/imgproc/src/opencl/filterSmall.cl

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. isBorder
  2. isBorder
  3. readSrcPixelGroup
  4. getBorderPixel
  5. readSrcPixelSingle
  6. filterSmall

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.

#ifdef BORDER_REPLICATE
//BORDER_REPLICATE:     aaaaaa|abcdefgh|hhhhhhh
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? (l_edge)   : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? (r_edge)-1 : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? (t_edge)   :(i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? (b_edge)-1 :(addr))
#endif

#ifdef BORDER_REFLECT
//BORDER_REFLECT:       fedcba|abcdefgh|hgfedcb
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? -(i)-1               : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? -(i)-1 : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? -(i)-1+((b_edge)<<1) : (addr))
#endif

#ifdef BORDER_REFLECT_101
//BORDER_REFLECT_101:   gfedcb|abcdefgh|gfedcba
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? -(i)                 : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? -(i)                 : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? -(i)-2+((b_edge)<<1) : (addr))
#endif

//blur function does not support BORDER_WRAP
#ifdef BORDER_WRAP
//BORDER_WRAP:          cdefgh|abcdefgh|abcdefg
#define ADDR_L(i, l_edge, r_edge)  ((i) <  (l_edge) ? (i)+(r_edge) : (i))
#define ADDR_R(i, r_edge, addr)    ((i) >= (r_edge) ? (i)-(r_edge) : (addr))
#define ADDR_H(i, t_edge, b_edge)  ((i) <  (t_edge) ? (i)+(b_edge) : (i))
#define ADDR_B(i, b_edge, addr)    ((i) >= (b_edge) ? (i)-(b_edge) : (addr))
#endif

#ifdef BORDER_ISOLATED
#define ISOLATED_MIN(VAL) (VAL)
#else
#define ISOLATED_MIN(VAL) 0
#endif

#ifdef EXTRA_EXTRAPOLATION // border > src image size
#ifdef BORDER_CONSTANT
// None
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        x = max(min(x, maxX - 1), minX); \
        y = max(min(y, maxY - 1), minY); \
    }
#elif defined BORDER_WRAP
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        if (x < minX) \
            x -= ((x - maxX + 1) / maxX) * maxX; \
        if (x >= maxX) \
            x %= maxX; \
        if (y < minY) \
            y -= ((y - maxY + 1) / maxY) * maxY; \
        if (y >= maxY) \
            y %= maxY; \
    }
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
#define EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, delta) \
    { \
        if (maxX - minX == 1) \
            x = minX; \
        else \
            do \
            { \
                if (x < minX) \
                    x = minX - (x - minX) - 1 + delta; \
                else \
                    x = maxX - 1 - (x - maxX) - delta; \
            } \
            while (x >= maxX || x < minX); \
        \
        if (maxY - minY == 1) \
            y = minY; \
        else \
            do \
            { \
                if (y < minY) \
                    y = minY - (y - minY) - 1 + delta; \
                else \
                    y = maxY - 1 - (y - maxY) - delta; \
            } \
            while (y >= maxY || y < minY); \
    }
#ifdef BORDER_REFLECT
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, 0)
#elif defined(BORDER_REFLECT_101) || defined(BORDER_REFLECT101)
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) EXTRAPOLATE_(x, y, minX, minY, maxX, maxY, 1)
#endif
#else
#error No extrapolation method
#endif
#else
#define EXTRAPOLATE(x, y, minX, minY, maxX, maxY) \
    { \
        int _row = y - ISOLATED_MIN(minY), _col = x - ISOLATED_MIN(minX); \
        _row = ADDR_H(_row, 0, maxY - ISOLATED_MIN(minY)); \
        _row = ADDR_B(_row, maxY - ISOLATED_MIN(minY), _row); \
        y = _row + ISOLATED_MIN(minY); \
        \
        _col = ADDR_L(_col, 0, maxX - ISOLATED_MIN(minX)); \
        _col = ADDR_R(_col, maxX - ISOLATED_MIN(minX), _col); \
        x = _col + ISOLATED_MIN(minX); \
    }
#endif

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif

#if cn != 3
#define loadpix(addr) *(__global const srcT *)(addr)
#define storepix(val, addr)  *(__global dstT *)(addr) = val
#define SRCSIZE (int)sizeof(srcT)
#define DSTSIZE (int)sizeof(dstT)
#else
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
#define SRCSIZE (int)sizeof(srcT1) * cn
#define DSTSIZE (int)sizeof(dstT1) * cn
#endif

#define noconvert

struct RectCoords
{
    int x1, y1, x2, y2;
};

#ifdef BORDER_ISOLATED
inline bool isBorder(const struct RectCoords bounds, int2 coord, int numPixels)
{
    return coord.x < bounds.x1 || coord.y < bounds.y1 || coord.x + numPixels > bounds.x2 || coord.y >= bounds.y2;
}
#else
inline bool isBorder(const struct RectCoords bounds, int2 coord, int numPixels)
{
    return coord.x < 0 || coord.y < 0 || coord.x + numPixels > bounds.x2 || coord.y >= bounds.y2;
}
#endif

#define float1 float
#define uchar1 uchar
#define int1 int
#define uint1 unit

#define __CAT(x, y) x##y
#define CAT(x, y) __CAT(x, y)

#define vload1(OFFSET, PTR) (*(PTR + OFFSET))
#define PX_LOAD_VEC_TYPE CAT(srcT1, PX_LOAD_VEC_SIZE)
#define PX_LOAD_FLOAT_VEC_TYPE CAT(WT1, PX_LOAD_VEC_SIZE)
#define PX_LOAD CAT(vload, PX_LOAD_VEC_SIZE)


inline PX_LOAD_FLOAT_VEC_TYPE readSrcPixelGroup(int2 pos, __global const uchar * srcptr,
                                                int srcstep, const struct RectCoords srcCoords)
{
    __global const srcT1 * ptr = (__global const srcT1 *)
                                (srcptr + mad24(pos.y, srcstep, pos.x * SRCSIZE));
    return PX_LOAD_FLOAT_VEC_CONV(PX_LOAD(0, ptr));
}

// Macros to ensure unrolled loops
#define LOOP1(VAR, STMT) (STMT); (VAR)++;
#define LOOP2(VAR, STMT) LOOP1(VAR, STMT); (STMT); (VAR)++;
#define LOOP3(VAR, STMT) LOOP2(VAR, STMT); (STMT); (VAR)++;
#define LOOP4(VAR, STMT) LOOP3(VAR, STMT); (STMT); (VAR)++;
#define LOOP5(VAR, STMT) LOOP4(VAR, STMT); (STMT); (VAR)++;
#define LOOP6(VAR, STMT) LOOP5(VAR, STMT); (STMT); (VAR)++;
#define LOOP7(VAR, STMT) LOOP6(VAR, STMT); (STMT); (VAR)++;
#define LOOP8(VAR, STMT) LOOP7(VAR, STMT); (STMT); (VAR)++;
#define LOOP9(VAR, STMT) LOOP8(VAR, STMT); (STMT); (VAR)++;
#define LOOP10(VAR, STMT) LOOP9(VAR, STMT); (STMT); (VAR)++;
#define LOOP11(VAR, STMT) LOOP10(VAR, STMT); (STMT); (VAR)++;
#define LOOP12(VAR, STMT) LOOP11(VAR, STMT); (STMT); (VAR)++;
#define LOOP13(VAR, STMT) LOOP12(VAR, STMT); (STMT); (VAR)++;

#define LOOP(N, VAR, STMT) CAT(LOOP, N)((VAR), (STMT))

#ifdef OP_BOX_FILTER
#define PROCESS_ELEM \
    WT total_sum = (WT)(0); \
    int sy = 0; \
    LOOP(KERNEL_SIZE_Y, sy, \
    { \
        int sx = 0; \
        LOOP(KERNEL_SIZE_X, sx, \
        { \
            total_sum += privateData[py + sy][px + sx]; \
        }); \
    })

#elif defined OP_FILTER2D

#define DIG(a) a,
__constant WT1 kernelData[] = { COEFF };

#define PROCESS_ELEM \
    WT total_sum = 0; \
    int sy = 0; \
    int kernelIndex = 0; \
    LOOP(KERNEL_SIZE_Y, sy, \
    { \
        int sx = 0; \
        LOOP(KERNEL_SIZE_X, sx, \
        { \
            total_sum = fma(kernelData[kernelIndex++], privateData[py + sy][px + sx], total_sum); \
        }); \
    })

#elif defined OP_ERODE || defined OP_DILATE

#ifdef DEPTH_0
#define MIN_VAL 0
#define MAX_VAL UCHAR_MAX
#elif defined DEPTH_1
#define MIN_VAL SCHAR_MIN
#define MAX_VAL SCHAR_MAX
#elif defined DEPTH_2
#define MIN_VAL 0
#define MAX_VAL USHRT_MAX
#elif defined DEPTH_3
#define MIN_VAL SHRT_MIN
#define MAX_VAL SHRT_MAX
#elif defined DEPTH_4
#define MIN_VAL INT_MIN
#define MAX_VAL INT_MAX
#elif defined DEPTH_5
#define MIN_VAL (-FLT_MAX)
#define MAX_VAL FLT_MAX
#elif defined DEPTH_6
#define MIN_VAL (-DBL_MAX)
#define MAX_VAL DBL_MAX
#endif

#ifdef OP_ERODE
#define VAL (WT)MAX_VAL
#elif defined OP_DILATE
#define VAL (WT)MIN_VAL
#else
#error "Unknown operation"
#endif

#define convert_float1 convert_float
#define convert_uchar1 convert_uchar
#define convert_int1 convert_int
#define convert_uint1 convert_uint

#ifdef OP_ERODE
#if defined INTEL_DEVICE && defined DEPTH_0
// workaround for bug in Intel HD graphics drivers (10.18.10.3496 or older)
#define WA_CONVERT_1 CAT(convert_uint, cn)
#define WA_CONVERT_2 CAT(convert_, srcT)
#define MORPH_OP(A, B) ((A) < (B) ? (A) : (B))
#else
#define MORPH_OP(A, B) min((A), (B))
#endif
#endif
#ifdef OP_DILATE
#define MORPH_OP(A, B) max((A), (B))
#endif

#define PROCESS(_y, _x) \
    total_sum = convertToWT(MORPH_OP(convertToWT(total_sum), convertToWT(privateData[py + _y][px + _x])));

#define PROCESS_ELEM \
    WT total_sum = convertToWT(VAL); \
    PROCESS_ELEM_

#else
#error "No processing is specified"
#endif

#if defined OP_GRADIENT || defined OP_TOPHAT || defined OP_BLACKHAT
#define EXTRA_PARAMS , __global const uchar * matptr, int mat_step, int mat_offset
#else
#define EXTRA_PARAMS
#endif

inline WT getBorderPixel(const struct RectCoords bounds, int2 coord,
    __global const uchar * srcptr, int srcstep)
{
#ifdef BORDER_CONSTANT
#ifdef OP_ERODE
    return (WT)(MAX_VAL);
#elif defined OP_DILATE
    return (WT)(MIN_VAL);
#else
    return (WT)(0);
#endif
#else

    int selected_col = coord.x;
    int selected_row = coord.y;

    EXTRAPOLATE(selected_col, selected_row,
        bounds.x1, bounds.y1,
        bounds.x2, bounds.y2);

    __global const uchar* ptr = srcptr + mad24(selected_row, srcstep, selected_col * SRCSIZE);
    return convertToWT(loadpix(ptr));
#endif
}

inline WT readSrcPixelSingle(int2 pos, __global const uchar * srcptr,
    int srcstep, const struct RectCoords srcCoords)
{
    if (!isBorder(srcCoords, pos, 1))
    {
        __global const uchar * ptr = srcptr + mad24(pos.y, srcstep, pos.x * SRCSIZE);
        return convertToWT(loadpix(ptr));
    }
    else
        return getBorderPixel(srcCoords, pos, srcptr, srcstep);
}


__kernel void filterSmall(__global const uchar * srcptr, int src_step, int srcOffsetX, int srcOffsetY, int srcEndX, int srcEndY,
                          __global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols
#ifdef NORMALIZE
                          , float alpha
#endif
                          EXTRA_PARAMS )
{
    // for non-isolated border: offsetX, offsetY, wholeX, wholeY
    const struct RectCoords srcCoords = { srcOffsetX, srcOffsetY, srcEndX, srcEndY };

    const int startX = get_global_id(0) * PX_PER_WI_X;
    const int startY = get_global_id(1) * PX_PER_WI_Y;

    if (startX >= cols || startY >= rows)
        return;

    WT privateData[PX_PER_WI_Y + KERNEL_SIZE_Y - 1][PRIV_DATA_WIDTH];

    // Load all of the pixels needed for the calculation
    int py = 0;
    LOOP(PX_LOAD_Y_ITERATIONS, py,
    {
        int y = startY + py;
        int px = 0;
        LOOP(PX_LOAD_X_ITERATIONS, px,
        {
            int x = startX + (px * PX_LOAD_NUM_PX);
            int2 srcPos = (int2)(srcCoords.x1 + x - ANCHOR_X, srcCoords.y1 + y - ANCHOR_Y);

            if (!isBorder(srcCoords, srcPos, PX_LOAD_NUM_PX))
            {
                PX_LOAD_FLOAT_VEC_TYPE p = readSrcPixelGroup(srcPos, srcptr, src_step, srcCoords);
#ifdef SQR
                *((PX_LOAD_FLOAT_VEC_TYPE *)&privateData[py][px * PX_LOAD_NUM_PX]) = p * p;
#else
                *((PX_LOAD_FLOAT_VEC_TYPE *)&privateData[py][px * PX_LOAD_NUM_PX]) = p;
#endif
            }
            else
            {
                int lx = 0;
                LOOP(PX_LOAD_NUM_PX, lx,
                {
                    WT p = readSrcPixelSingle(srcPos, srcptr, src_step, srcCoords);
#ifdef SQR
                    *((WT*)&privateData[py][px * PX_LOAD_NUM_PX + lx]) = p * p;
#else
                    *((WT*)&privateData[py][px * PX_LOAD_NUM_PX + lx]) = p;
#endif
                    srcPos.x++;
                });
            }
        });
    });

    // Use the stored pixels to compute the results
    py = 0;
    LOOP(PX_PER_WI_Y, py,
    {
        int y = startY + py;
        int px = 0;
        LOOP(PX_PER_WI_X, px,
        {
            int x = startX + px;
            PROCESS_ELEM;
            int dst_index = mad24(y, dst_step, mad24(x, DSTSIZE, dst_offset));
            __global dstT * dstPtr = (__global dstT *)(dstptr + dst_index);
#ifdef NORMALIZE
            total_sum *= (WT)(alpha);
#endif
#if defined OP_GRADIENT || defined OP_TOPHAT || defined OP_BLACKHAT
            //for this type of operations SRCSIZE == DSTSIZE
            int mat_index = mad24(y, mat_step, mad24(x, SRCSIZE, mat_offset));
            WT value = convertToWT(loadpix(matptr + mat_index));

#ifdef OP_GRADIENT
            storepix(convertToDstT(convertToWT(total_sum) - convertToWT(value)), dstPtr );
#elif defined OP_TOPHAT
            storepix(convertToDstT(convertToWT(value) - convertToWT(total_sum)), dstPtr );
#elif defined OP_BLACKHAT
            storepix(convertToDstT(convertToWT(total_sum) - convertToWT(value)), dstPtr );
#endif
#else // erode or dilate, or open-close
            storepix(convertToDstT(total_sum), dstPtr);
#endif
        });
    });
}

/* [<][>][^][v][top][bottom][index][help] */