/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { KalmanFilter::KalmanFilter() {} KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type) { init(dynamParams, measureParams, controlParams, type); } void KalmanFilter::init(int DP, int MP, int CP, int type) { CV_Assert( DP > 0 && MP > 0 ); CV_Assert( type == CV_32F || type == CV_64F ); CP = std::max(CP, 0); statePre = Mat::zeros(DP, 1, type); statePost = Mat::zeros(DP, 1, type); transitionMatrix = Mat::eye(DP, DP, type); processNoiseCov = Mat::eye(DP, DP, type); measurementMatrix = Mat::zeros(MP, DP, type); measurementNoiseCov = Mat::eye(MP, MP, type); errorCovPre = Mat::zeros(DP, DP, type); errorCovPost = Mat::zeros(DP, DP, type); gain = Mat::zeros(DP, MP, type); if( CP > 0 ) controlMatrix = Mat::zeros(DP, CP, type); else controlMatrix.release(); temp1.create(DP, DP, type); temp2.create(MP, DP, type); temp3.create(MP, MP, type); temp4.create(MP, DP, type); temp5.create(MP, 1, type); } const Mat& KalmanFilter::predict(const Mat& control) { // update the state: x'(k) = A*x(k) statePre = transitionMatrix*statePost; if( !control.empty() ) // x'(k) = x'(k) + B*u(k) statePre += controlMatrix*control; // update error covariance matrices: temp1 = A*P(k) temp1 = transitionMatrix*errorCovPost; // P'(k) = temp1*At + Q gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T); // handle the case when there will be measurement before the next predict. statePre.copyTo(statePost); errorCovPre.copyTo(errorCovPost); return statePre; } const Mat& KalmanFilter::correct(const Mat& measurement) { // temp2 = H*P'(k) temp2 = measurementMatrix * errorCovPre; // temp3 = temp2*Ht + R gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T); // temp4 = inv(temp3)*temp2 = Kt(k) solve(temp3, temp2, temp4, DECOMP_SVD); // K(k) gain = temp4.t(); // temp5 = z(k) - H*x'(k) temp5 = measurement - measurementMatrix*statePre; // x(k) = x'(k) + K(k)*temp5 statePost = statePre + gain*temp5; // P(k) = P'(k) - K(k)*temp2 errorCovPost = errorCovPre - gain*temp2; return statePost; } }