ml 2872 modules/core/include/opencv2/core.hpp virtual void setMultiline(bool ml = true) = 0; ml 271 modules/core/src/out.cpp void setMultiline(bool ml) ml 273 modules/core/src/out.cpp multiline = ml; ml 79 modules/ml/src/knearest.cpp bool update = (flags & ml::KNearest::UPDATE_MODEL) != 0 && !samples.empty(); ml 141 modules/ml/src/knearest.cpp int getType() const { return ml::KNearest::BRUTE_FORCE; } ml 365 modules/ml/src/knearest.cpp int getType() const { return ml::KNearest::KDTREE; } ml 46 modules/ml/test/test_emknearestkmeans.cpp using cv::ml::TrainData; ml 47 modules/ml/test/test_emknearestkmeans.cpp using cv::ml::EM; ml 48 modules/ml/test/test_emknearestkmeans.cpp using cv::ml::KNearest; ml 318 modules/ml/test/test_emknearestkmeans.cpp knearest->train(trainData, ml::ROW_SAMPLE, trainLabels); ml 335 modules/ml/test/test_emknearestkmeans.cpp knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); ml 63 modules/ml/test/test_lr.cpp using namespace cv::ml; ml 31 modules/ml/test/test_precomp.hpp using cv::ml::StatModel; ml 32 modules/ml/test/test_precomp.hpp using cv::ml::TrainData; ml 33 modules/ml/test/test_precomp.hpp using cv::ml::NormalBayesClassifier; ml 34 modules/ml/test/test_precomp.hpp using cv::ml::SVM; ml 35 modules/ml/test/test_precomp.hpp using cv::ml::KNearest; ml 36 modules/ml/test/test_precomp.hpp using cv::ml::ParamGrid; ml 37 modules/ml/test/test_precomp.hpp using cv::ml::ANN_MLP; ml 38 modules/ml/test/test_precomp.hpp using cv::ml::DTrees; ml 39 modules/ml/test/test_precomp.hpp using cv::ml::Boost; ml 40 modules/ml/test/test_precomp.hpp using cv::ml::RTrees; ml 186 modules/ml/test/test_save_load.cpp using namespace cv::ml; ml 239 modules/ml/test/test_save_load.cpp if (varTypes[var] == ml::VAR_CATEGORICAL) ml 274 modules/ml/test/test_save_load.cpp Ptr<cv::ml::SVM> svm1, svm2, svm3; ml 46 modules/ml/test/test_svmtrainauto.cpp using cv::ml::SVM; ml 47 modules/ml/test/test_svmtrainauto.cpp using cv::ml::TrainData; ml 72 modules/ml/test/test_svmtrainauto.cpp cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); ml 220 modules/videoio/src/cap_dc1394_v2.cpp virtual bool initVidereRectifyMaps( const char* info, IplImage* ml[2], IplImage* mr[2] ); ml 868 modules/videoio/src/cap_dc1394_v2.cpp IplImage* ml[2], IplImage* mr[2] ) ml 879 modules/videoio/src/cap_dc1394_v2.cpp IplImage* mx = cvCreateImage(cvGetSize(ml[0]), IPL_DEPTH_32F, 1); ml 880 modules/videoio/src/cap_dc1394_v2.cpp IplImage* my = cvCreateImage(cvGetSize(ml[0]), IPL_DEPTH_32F, 1); ml 891 modules/videoio/src/cap_dc1394_v2.cpp IplImage** dst = k == 0 ? ml : mr; ml 62 modules/videostab/src/wobble_suppression.cpp const float *ml, const float *mr, PtrStepSzf mapx, PtrStepSzf mapy); ml 66 modules/videostab/src/wobble_suppression.cpp int left, int idx, int right, Size size, const Mat &ml, const Mat &mr, ml 69 modules/videostab/src/wobble_suppression.cpp CV_Assert(ml.size() == Size(3, 3) && ml.type() == CV_32F && ml.isContinuous()); ml 77 modules/videostab/src/wobble_suppression.cpp ml.ptr<float>(), mr.ptr<float>(), mapx, mapy); ml 6 samples/cpp/em.cpp using namespace cv::ml; ml 10 samples/cpp/letter_recog.cpp using namespace cv::ml; ml 67 samples/cpp/logistic_regression.cpp using namespace cv::ml; ml 15 samples/cpp/points_classifier.cpp using namespace cv::ml; ml 11 samples/cpp/train_HOG.cpp using namespace cv::ml; ml 9 samples/cpp/tree_engine.cpp using namespace cv::ml; ml 8 samples/cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp using namespace cv::ml; ml 12 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp using namespace cv::ml;