prepare_train_data 186 samples/cpp/letter_recog.cpp Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples); prepare_train_data 439 samples/cpp/letter_recog.cpp Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples); prepare_train_data 466 samples/cpp/letter_recog.cpp Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples); prepare_train_data 503 samples/cpp/letter_recog.cpp Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples); prepare_train_data 105 samples/cpp/points_classifier.cpp Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data()); prepare_train_data 119 samples/cpp/points_classifier.cpp knn->train(prepare_train_data()); prepare_train_data 137 samples/cpp/points_classifier.cpp svm->train(prepare_train_data()); prepare_train_data 159 samples/cpp/points_classifier.cpp dtree->train(prepare_train_data()); prepare_train_data 174 samples/cpp/points_classifier.cpp boost->train(prepare_train_data()); prepare_train_data 191 samples/cpp/points_classifier.cpp Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params); prepare_train_data 209 samples/cpp/points_classifier.cpp rtrees->train(prepare_train_data());