NTRAINING_SAMPLES 34 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); NTRAINING_SAMPLES 35 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp Mat labels (2*NTRAINING_SAMPLES, 1, CV_32SC1); NTRAINING_SAMPLES 40 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); NTRAINING_SAMPLES 53 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); NTRAINING_SAMPLES 65 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); NTRAINING_SAMPLES 74 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1 NTRAINING_SAMPLES 75 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2 NTRAINING_SAMPLES 112 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp for (int i = 0; i < NTRAINING_SAMPLES; ++i) NTRAINING_SAMPLES 119 samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i)