This source file includes following definitions.
- run_test_case
- validate_test_results
- TEST
- TEST
- TEST
- TEST
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
validationFN = "avalidation.xml";
}
int CV_AMLTest::run_test_case( int testCaseIdx )
{
int code = cvtest::TS::OK;
code = prepare_test_case( testCaseIdx );
if (code == cvtest::TS::OK)
{
#ifdef GET_STAT
const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
printf("%s, %s ", name, data_name);
const int icount = 100;
float res[icount];
for (int k = 0; k < icount; k++)
{
#endif
data->shuffleTrainTest();
code = train( testCaseIdx );
#ifdef GET_STAT
float case_result = get_error();
res[k] = case_result;
}
float mean = 0, sigma = 0;
for (int k = 0; k < icount; k++)
{
mean += res[k];
}
mean = mean /icount;
for (int k = 0; k < icount; k++)
{
sigma += (res[k] - mean)*(res[k] - mean);
}
sigma = sqrt(sigma/icount);
printf("%f, %f\n", mean, sigma);
#endif
}
return code;
}
int CV_AMLTest::validate_test_results( int testCaseIdx )
{
int iters;
float mean, sigma;
FileNode resultNode =
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
resultNode["iter_count"] >> iters;
if ( iters > 0)
{
resultNode["mean"] >> mean;
resultNode["sigma"] >> sigma;
model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx));
float curErr = get_test_error( testCaseIdx );
const int coeff = 4;
ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n",
testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
if ( abs( curErr - mean) > coeff*sigma )
{
ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
return cvtest::TS::FAIL_BAD_ACCURACY;
}
else
ts->printf( cvtest::TS::LOG, ".\n" );
}
else
{
ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
return cvtest::TS::OK;
}
TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }