root/libgd/gd_matrix.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gdAffineApplyToPointF
  2. gdAffineInvert
  3. gdAffineFlip
  4. gdAffineConcat
  5. gdAffineIdentity
  6. gdAffineScale
  7. gdAffineRotate
  8. gdAffineShearHorizontal
  9. gdAffineShearVertical
  10. gdAffineTranslate
  11. gdAffineExpansion
  12. gdAffineRectilinear
  13. gdAffineEqual

#include "gd.h"
#include <math.h>

#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif

/**
 * Title: Matrix
 * Group: Affine Matrix
 */

/**
 * Function: gdAffineApplyToPointF
 *  Applies an affine transformation to a point (floating point
 *  gdPointF)
 *
 *
 * Parameters:
 *      dst - Where to store the resulting point
 *  affine - Source Point
 *  flip_horz - affine matrix
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
int gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
                  const double affine[6])
{
        double x = src->x;
        double y = src->y;
        x = src->x;
        y = src->y;
        dst->x = x * affine[0] + y * affine[2] + affine[4];
        dst->y = x * affine[1] + y * affine[3] + affine[5];
        return GD_TRUE;
}

/**
 * Function: gdAffineInvert
 *  Find the inverse of an affine transformation.
 *
 * All non-degenerate affine transforms are invertible. Applying the
 * inverted matrix will restore the original values. Multiplying <src>
 * by <dst> (commutative) will return the identity affine (rounding
 * error possible).
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *  src_affine - Original affine matrix
 *  flip_horz - Whether or not to flip horizontally
 *  flip_vert - Whether or not to flip vertically
 *
 * See also:
 *  <gdAffineIdentity>
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
int gdAffineInvert (double dst[6], const double src[6])
{
        double r_det = (src[0] * src[3] - src[1] * src[2]);

        if (r_det <= 0.0) {
                return GD_FALSE;
        }

        r_det = 1.0 / r_det;
        dst[0] = src[3] * r_det;
        dst[1] = -src[1] * r_det;
        dst[2] = -src[2] * r_det;
        dst[3] = src[0] * r_det;
        dst[4] = -src[4] * dst[0] - src[5] * dst[2];
        dst[5] = -src[4] * dst[1] - src[5] * dst[3];
        return GD_TRUE;
}

/**
 * Function: gdAffineFlip
 *  Flip an affine transformation horizontally or vertically.
 *
 * Flips the affine transform, giving GD_FALSE for <flip_horz> and
 * <flip_vert> will clone the affine matrix. GD_TRUE for both will
 * copy a 180° rotation.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *  src_affine - Original affine matrix
 *  flip_h - Whether or not to flip horizontally
 *  flip_v - Whether or not to flip vertically
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
{
        dst[0] = flip_h ? - src[0] : src[0];
        dst[1] = flip_h ? - src[1] : src[1];
        dst[2] = flip_v ? - src[2] : src[2];
        dst[3] = flip_v ? - src[3] : src[3];
        dst[4] = flip_h ? - src[4] : src[4];
        dst[5] = flip_v ? - src[5] : src[5];
        return GD_TRUE;
}

/**
 * Function: gdAffineConcat
 * Concat (Multiply) two affine transformation matrices.
 *
 * Concats two affine transforms together, i.e. the result
 * will be the equivalent of doing first the transformation m1 and then
 * m2. All parameters can be the same matrix (safe to call using
 * the same array for all three arguments).
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *  m1 - First affine matrix
 *  m2 - Second affine matrix
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
{
        double dst0, dst1, dst2, dst3, dst4, dst5;

        dst0 = m1[0] * m2[0] + m1[1] * m2[2];
        dst1 = m1[0] * m2[1] + m1[1] * m2[3];
        dst2 = m1[2] * m2[0] + m1[3] * m2[2];
        dst3 = m1[2] * m2[1] + m1[3] * m2[3];
        dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
        dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
        dst[0] = dst0;
        dst[1] = dst1;
        dst[2] = dst2;
        dst[3] = dst3;
        dst[4] = dst4;
        dst[5] = dst5;
        return GD_TRUE;
}

/**
 * Function: gdAffineIdentity
 * Set up the identity matrix.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineIdentity (double dst[6])
{
        dst[0] = 1;
        dst[1] = 0;
        dst[2] = 0;
        dst[3] = 1;
        dst[4] = 0;
        dst[5] = 0;
        return GD_TRUE;
}

/**
 * Function: gdAffineScale
 * Set up a scaling matrix.
 *
 * Parameters:
 *      scale_x - X scale factor
 *      scale_y - Y scale factor
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineScale (double dst[6], const double scale_x, const double scale_y)
{
        dst[0] = scale_x;
        dst[1] = 0;
        dst[2] = 0;
        dst[3] = scale_y;
        dst[4] = 0;
        dst[5] = 0;
        return GD_TRUE;
}

/**
 * Function: gdAffineRotate
 * Set up a rotation affine transform.
 *
 * Like the other angle in libGD, in which increasing y moves
 * downward, this is a counterclockwise rotation.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *      angle - Rotation angle in degrees
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineRotate (double dst[6], const double angle)
{
        const double sin_t = sin (angle * M_PI / 180.0);
        const double cos_t = cos (angle * M_PI / 180.0);

        dst[0] = cos_t;
        dst[1] = sin_t;
        dst[2] = -sin_t;
        dst[3] = cos_t;
        dst[4] = 0;
        dst[5] = 0;
        return GD_TRUE;
}

/**
 * Function: gdAffineShearHorizontal
 * Set up a horizontal shearing matrix || becomes \\.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *      angle - Shear angle in degrees
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineShearHorizontal(double dst[6], const double angle)
{
        dst[0] = 1;
        dst[1] = 0;
        dst[2] = tan(angle * M_PI / 180.0);
        dst[3] = 1;
        dst[4] = 0;
        dst[5] = 0;
        return GD_TRUE;
}

/**
 * Function: gdAffineShearVertical
 * Set up a vertical shearing matrix, columns are untouched.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *      angle - Shear angle in degrees
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineShearVertical(double dst[6], const double angle)
{
        dst[0] = 1;
        dst[1] = tan(angle * M_PI / 180.0);;
        dst[2] = 0;
        dst[3] = 1;
        dst[4] = 0;
        dst[5] = 0;
        return GD_TRUE;
}

/**
 * Function: gdAffineTranslate
 * Set up a translation matrix.
 *
 * Parameters:
 *      dst - Where to store the resulting affine transform
 *      offset_x - Horizontal translation amount
 *      offset_y - Vertical translation amount
 *
 * Returns:
 *  GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
{
        dst[0] = 1;
        dst[1] = 0;
        dst[2] = 0;
        dst[3] = 1;
        dst[4] = offset_x;
        dst[5] = offset_y;
    return GD_TRUE;
}

/**
 * gdAffineexpansion: Find the affine's expansion factor.
 * @src: The affine transformation.
 *
 * Finds the expansion factor, i.e. the square root of the factor
 * by which the affine transform affects area. In an affine transform
 * composed of scaling, rotation, shearing, and translation, returns
 * the amount of scaling.
 *
 *  GD_SUCCESS on success or GD_FAILURE
 **/
double gdAffineExpansion (const double src[6])
{
  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}

/**
 * Function: gdAffineRectilinear
 * Determines whether the affine transformation is axis aligned. A
 * tolerance has been implemented using GD_EPSILON.
 *
 * Parameters:
 *      m - The affine transformation
 *
 * Returns:
 *  GD_TRUE if the affine is rectilinear or GD_FALSE
 */
int gdAffineRectilinear (const double m[6])
{
  return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
          (fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
}

/**
 * Function: gdAffineEqual
 * Determines whether two affine transformations are equal. A tolerance
 * has been implemented using GD_EPSILON.
 *
 * Parameters:
 *      m1 - The first affine transformation
 *      m2 - The first affine transformation
 *
 * Returns:
 *      GD_SUCCESS on success or GD_FAILURE
 */
int gdAffineEqual (const double m1[6], const double m2[6])
{
  return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
          fabs (m1[1] - m2[1]) < GD_EPSILON &&
          fabs (m1[2] - m2[2]) < GD_EPSILON &&
          fabs (m1[3] - m2[3]) < GD_EPSILON &&
          fabs (m1[4] - m2[4]) < GD_EPSILON &&
          fabs (m1[5] - m2[5]) < GD_EPSILON);
}


/* [<][>][^][v][top][bottom][index][help] */