This source file includes following definitions.
- simple_version
- main
#include "Halide.h"
#include <cstdio>
#include "halide_benchmark.h"
using namespace Halide;
using namespace Halide::Tools;
void simple_version(float* A, float *B, float *C, int width, int stride) {
for (int iy = 0; iy < width; iy++) {
for (int ix = 0; ix < width; ix++) {
float *cc = C + iy * stride + ix;
*cc = 0.0f;
for (int ik = 0; ik < width; ik++) {
*cc = *cc + A[iy * stride + ik] * B[ik * stride + ix];
}
}
}
}
int main(int argc, char **argv) {
const int matrix_size = 992, block_size = 32;
ImageParam A(type_of<float>(), 2);
ImageParam B(type_of<float>(), 2);
Var x("x"), xi("xi"), xo("xo"), y("y"), yo("yo"), yi("yo"), yii("yii"), xii("xii");
Func matrix_mul("matrix_mul");
RDom k(0, matrix_size);
RVar ki;
matrix_mul(x, y) = 0.0f;
matrix_mul(x, y) += A(k, y) * B(x, k);
matrix_mul.vectorize(x, 8);
matrix_mul.update(0)
.split(x, x, xi, block_size).split(xi, xi, xii, 8)
.split(y, y, yi, block_size).split(yi, yi, yii, 4)
.split(k, k, ki, block_size)
.reorder(xii, yii, xi, ki, yi, k, x, y)
.parallel(y).vectorize(xii).unroll(xi).unroll(yii);
matrix_mul
.bound(x, 0, matrix_size)
.bound(y, 0, matrix_size);
matrix_mul.compile_jit();
const int iterations = 50;
Buffer<float> mat_A(matrix_size, matrix_size);
Buffer<float> mat_B(matrix_size, matrix_size);
Buffer<float> output(matrix_size, matrix_size);
for (int iy = 0; iy < matrix_size; iy++) {
for (int ix = 0; ix < matrix_size; ix++) {
mat_A(ix, iy) = (rand() % 256) / 256.0f;
mat_B(ix, iy) = (rand() % 256) / 256.0f;
}
}
A.set(mat_A);
B.set(mat_B);
matrix_mul.realize(output);
double t = benchmark(1, iterations, [&]() {
matrix_mul.realize(output);
});
Buffer<float> output_ref(matrix_size, matrix_size);
Buffer<float> output_halide(matrix_size, matrix_size);
simple_version(mat_A.data(), mat_B.data(), output_ref.data(), mat_A.width(), mat_A.stride(1));
matrix_mul.realize(output_halide);
bool halide_correct = true;
for (int iy = 0; iy < matrix_size && halide_correct; iy++) {
for (int ix = 0; ix < matrix_size; ix++) {
halide_correct = halide_correct && (std::abs(output_ref(ix, iy) - output_halide(ix, iy)) < 0.001f);
}
}
if (halide_correct) {
printf("Halide results - OK\n");
} else {
printf("Halide results - FAIL\n");
return 1;
}
float gflops = 2.0f * matrix_size * matrix_size * matrix_size / 1e6f;
printf("Halide: %fms, %f GFLOP/s\n\n", t * 1e3, (gflops / t));
printf("Success!\n");
return 0;
}