root/test/correctness/implicit_args_tests.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. check_image
  2. main

#include "Halide.h"
#include <stdio.h>
#include <functional>

using namespace Halide;
using namespace Halide::Internal;

typedef std::function<int(int,int,int)> FuncChecker;

int check_image(const Realization &r, const std::vector<FuncChecker> &funcs) {
    for (size_t idx = 0; idx < funcs.size(); idx++) {
        const Buffer<int> &im = r[idx];
        for (int z = 0; z < im.channels(); z++) {
            for (int y = 0; y < im.height(); y++) {
                for (int x = 0; x < im.width(); x++) {
                    int correct = funcs[idx](x, y, z);
                    if (im(x, y, z) != correct) {
                        printf("im(%d, %d, %d) = %d instead of %d\n",
                               x, y, z, im(x, y, z), correct);
                        return -1;
                    }
                }
            }
        }
    }
    return 0;
}

int main(int argc, char **argv) {
    {
        Var x("x"), y("y");
        Func f("f"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        f(x, _) = h(_) + 2;     // This means f(x, _0, _1) = h(_0, _1) + 2

        Realization result = f.realize(100, 100, 100);
        auto func = [](int x, int y, int z) {
            return y + z + 2;
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y"), z("z");
        Func f("f"), g("g"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        f(x, y, z) = x;
        f.compute_root();

        RDom r(0, 2);
        g(x, _) = h(_) + 1;                   // This means g(x, _0, _1) = h(_0, _1) + 1
        g(clamp(f(r.x, _), 0, 50), _) += 2;   // This means g(f(r.x, _0, _1), _0, _1) += 2

        Realization result = g.realize(100, 100, 100);
        auto func = [](int x, int y, int z) {
            return (x == 0) || (x == 1) ? y + z + 3 : y + z + 1;
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), g("g"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        g(x)  = x + 2;
        g.compute_root();

        f(x, _) = h(_) + 3;     // This means f(x, _0, _1) = h(_0, _1) + 3
        f(x, _) += h(_)*g(_);   // This means f(x, _0, _1) += h(_0, _1) * g(_0)

        Realization result = f.realize(100, 100, 100);
        auto func = [](int x, int y, int z) {
            return (y + z + 3) + (y + z)*(y + 2);
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        // This is equivalent to:
        //   f(x, _0, _1) = 0
        //   f(x, _0, _1) += h(_0, _1) + 2
        f(x, _) += h(_) + 2;

        Realization result = f.realize(100, 100, 100);
        auto func = [](int x, int y, int z) {
            return y + z + 2;
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), g("g"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        g(x)  = x + 2;
        g.compute_root();

        // This is equivalent to:
        //   f(_0, _1) = 0
        //   f(_0, _1) += h(_0, _1)*g(_0) + 3
        f(_) += h(_)*g(_) + 3;

        Realization result = f.realize(100, 100);
        auto func = [](int x, int y, int z) {
            return (x + y)*(x + 2) + 3;
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        // This means f(x, _0, _1) = {h(_0, _1) + 2, x + 2}
        f(x, _) = Tuple(h(_) + 2, x + 2);

        Realization result = f.realize(100, 100, 100);
        auto func1 = [](int x, int y, int z) {
            return y + z + 2;
        };
        auto func2 = [](int x, int y, int z) {
            return x + 2;
        };
        if (check_image(result, {func1, func2})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y"), z("z");
        Func f("f"), g("g"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        f(x, y, z) = x;
        f.compute_root();

        RDom r(0, 2);
        // This means g(x, _0, _1) = {h(_0, _1) + 1}
        g(x, _) = Tuple(h(_) + 1);
        // This means g(f(r.x, _0, _1), _0, _1) += {2}
        g(clamp(f(r.x, _), 0, 50), _) += Tuple(2);

        Realization result = g.realize(100, 100, 100);
        auto func = [](int x, int y, int z) {
            return (x == 0) || (x == 1) ? y + z + 3 : y + z + 1;
        };
        if (check_image(result, {func})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), h("h");

        h(x, y) = x + y;
        h.compute_root();

        // This is equivalent to:
        //   f(x, _0, _1) = {1, 1}
        //   f(x, _0, _1) += {h(_0, _1)[0] + 2, h(_0, _1)[1] * 3}
        f(x, _) *= Tuple(h(_) + 2, h(_) * 3);

        Realization result = f.realize(100, 100, 100);
        auto func1 = [](int x, int y, int z) {
            return y + z + 2;
        };
        auto func2 = [](int x, int y, int z) {
            return (y + z)*3;
        };
        if (check_image(result, {func1, func2})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), g("g"), h("h");

        h(x, y) = Tuple(x + y, x - y);
        h.compute_root();

        g(x)  = Tuple(x + 2, x - 2);
        g.compute_root();

        // This means f(x, _0, _1) = {h(_0, _1)[0] + 3, h(_0, _1)[1] + 4}
        f(x, _) = Tuple(h(_)[0] + 3, h(_)[1] + 4);
        // This means f(x, _0, _1) += {h(_0, _1)[0]*g(_0)[0], h(_0, _1)[1]*g(_0)[1]}
        f(x, _) += Tuple(h(_)[0]*g(_)[0], h(_)[1]*g(_)[1]);

        Realization result = f.realize(100, 100, 100);
        auto func1 = [](int x, int y, int z) {
            return (y + z + 3) + (y + z)*(y + 2);
        };
        auto func2 = [](int x, int y, int z) {
            return (y - z + 4) + (y - z)*(y - 2);
        };
        if (check_image(result, {func1, func2})) {
            return -1;
        }
    }

    {
        Var x("x"), y("y");
        Func f("f"), g("g"), h("h");

        h(x, y) = Tuple(x + y, x - y);
        h.compute_root();

        g(x)  = Tuple(x + 2, x- 2);
        g.compute_root();

        // This is equivalent to:
        //   f(_0, _1) = 0
        //   f(_0, _1) += {h(_0, _1)[0]*g(_0)[0] + 3, h(_0, _1)[1]*g(_0)[1] + 4}
        f(_) += Tuple(h(_)[0]*g(_)[0] + 3, h(_)[1]*g(_)[1] + 4);

        Realization result = f.realize(100, 100);
        auto func1 = [](int x, int y, int z) {
            return (x + y)*(x + 2) + 3;
        };
        auto func2 = [](int x, int y, int z) {
            return (x - y)*(x - 2) + 4;
        };
        if (check_image(result, {func1, func2})) {
            return -1;
        }
    }

    printf("Success!\n");
    return 0;
}

/* [<][>][^][v][top][bottom][index][help] */