/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- PushColormapIndex
- PushDoublePixel
- PushFloatPixel
- PushQuantumPixel
- PushQuantumLongPixel
- ImportQuantumPixels
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% QQQ U U AAA N N TTTTT U U M M %
% Q Q U U A A NN N T U U MM MM %
% Q Q U U AAAAA N N N T U U M M M %
% Q QQ U U A A N NN T U U M M %
% QQQQ UUU A A N N T UUU M M %
% %
% IIIII M M PPPP OOO RRRR TTTTT %
% I MM MM P P O O R R T %
% I M M M PPPP O O RRRR T %
% I M M P O O R R T %
% IIIII M M P OOO R R T %
% %
% MagickCore Methods to Import Quantum Pixels %
% %
% Software Design %
% John Cristy %
% October 1998 %
% %
% %
% Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/property.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/color-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/cache.h"
#include "magick/constitute.h"
#include "magick/delegate.h"
#include "magick/geometry.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/option.h"
#include "magick/pixel.h"
#include "magick/pixel-private.h"
#include "magick/quantum.h"
#include "magick/quantum-private.h"
#include "magick/resource_.h"
#include "magick/semaphore.h"
#include "magick/statistic.h"
#include "magick/stream.h"
#include "magick/string_.h"
#include "magick/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I m p o r t Q u a n t u m P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ImportQuantumPixels() transfers one or more pixel components from a user
% supplied buffer into the image pixel cache of an image. The pixels are
% expected in network byte order. It returns MagickTrue if the pixels are
% successfully transferred, otherwise MagickFalse.
%
% The format of the ImportQuantumPixels method is:
%
% size_t ImportQuantumPixels(Image *image,CacheView *image_view,
% const QuantumInfo *quantum_info,const QuantumType quantum_type,
% const unsigned char *pixels,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image cache view.
%
% o quantum_info: the quantum info.
%
% o quantum_type: Declare which pixel components to transfer (red, green,
% blue, opacity, RGB, or RGBA).
%
% o pixels: The pixel components are transferred from this buffer.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline IndexPacket PushColormapIndex(Image *image,
const size_t index,MagickBooleanType *range_exception)
{
if (index < image->colors)
return((IndexPacket) index);
*range_exception=MagickTrue;
return((IndexPacket) 0);
}
static inline const unsigned char *PushDoublePixel(
const QuantumState *quantum_state,const unsigned char *pixels,double *pixel)
{
double
*p;
unsigned char
quantum[8];
if (quantum_state->endian != LSBEndian)
{
quantum[7]=(*pixels++);
quantum[6]=(*pixels++);
quantum[5]=(*pixels++);
quantum[5]=(*pixels++);
quantum[3]=(*pixels++);
quantum[2]=(*pixels++);
quantum[1]=(*pixels++);
quantum[0]=(*pixels++);
p=(double *) quantum;
*pixel=(*p);
*pixel-=quantum_state->minimum;
*pixel*=quantum_state->scale;
return(pixels);
}
quantum[0]=(*pixels++);
quantum[1]=(*pixels++);
quantum[2]=(*pixels++);
quantum[3]=(*pixels++);
quantum[4]=(*pixels++);
quantum[5]=(*pixels++);
quantum[6]=(*pixels++);
quantum[7]=(*pixels++);
p=(double *) quantum;
*pixel=(*p);
*pixel-=quantum_state->minimum;
*pixel*=quantum_state->scale;
return(pixels);
}
static inline const unsigned char *PushFloatPixel(
const QuantumState *quantum_state,const unsigned char *pixels,float *pixel)
{
float
*p;
unsigned char
quantum[4];
if (quantum_state->endian != LSBEndian)
{
quantum[3]=(*pixels++);
quantum[2]=(*pixels++);
quantum[1]=(*pixels++);
quantum[0]=(*pixels++);
p=(float *) quantum;
*pixel=(*p);
*pixel-=quantum_state->minimum;
*pixel*=quantum_state->scale;
return(pixels);
}
quantum[0]=(*pixels++);
quantum[1]=(*pixels++);
quantum[2]=(*pixels++);
quantum[3]=(*pixels++);
p=(float *) quantum;
*pixel=(*p);
*pixel-=quantum_state->minimum;
*pixel*=quantum_state->scale;
return(pixels);
}
static inline const unsigned char *PushQuantumPixel(
QuantumState *quantum_state,const size_t depth,
const unsigned char *pixels,unsigned int *quantum)
{
register ssize_t
i;
register size_t
quantum_bits;
*quantum=(QuantumAny) 0;
for (i=(ssize_t) depth; i > 0L; )
{
if (quantum_state->bits == 0UL)
{
quantum_state->pixel=(*pixels++);
quantum_state->bits=8UL;
}
quantum_bits=(size_t) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
i-=(ssize_t) quantum_bits;
quantum_state->bits-=quantum_bits;
*quantum=(unsigned int) ((*quantum << quantum_bits) |
((quantum_state->pixel >> quantum_state->bits) &~ ((~0UL) <<
quantum_bits)));
}
return(pixels);
}
static inline const unsigned char *PushQuantumLongPixel(
QuantumState *quantum_state,const size_t depth,
const unsigned char *pixels,unsigned int *quantum)
{
register ssize_t
i;
register size_t
quantum_bits;
*quantum=0UL;
for (i=(ssize_t) depth; i > 0; )
{
if (quantum_state->bits == 0)
{
pixels=PushLongPixel(quantum_state->endian,pixels,
&quantum_state->pixel);
quantum_state->bits=32U;
}
quantum_bits=(size_t) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
*quantum|=(((quantum_state->pixel >> (32U-quantum_state->bits)) &
quantum_state->mask[quantum_bits]) << (depth-i));
i-=(ssize_t) quantum_bits;
quantum_state->bits-=quantum_bits;
}
return(pixels);
}
MagickExport size_t ImportQuantumPixels(Image *image,CacheView *image_view,
const QuantumInfo *quantum_info,const QuantumType quantum_type,
const unsigned char *pixels,ExceptionInfo *exception)
{
EndianType
endian;
MagickSizeType
number_pixels;
QuantumAny
range;
QuantumState
quantum_state;
register const unsigned char
*restrict p;
register IndexPacket
*restrict indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
size_t
extent;
ssize_t
bit;
unsigned int
pixel;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(quantum_info != (QuantumInfo *) NULL);
assert(quantum_info->signature == MagickSignature);
if (pixels == (const unsigned char *) NULL)
pixels=GetQuantumPixels(quantum_info);
x=0;
p=pixels;
if (image_view == (CacheView *) NULL)
{
number_pixels=GetImageExtent(image);
q=GetAuthenticPixelQueue(image);
indexes=GetAuthenticIndexQueue(image);
}
else
{
number_pixels=GetCacheViewExtent(image_view);
q=GetCacheViewAuthenticPixelQueue(image_view);
indexes=GetCacheViewAuthenticIndexQueue(image_view);
}
InitializeQuantumState(quantum_info,image->endian,&quantum_state);
extent=GetQuantumExtent(image,quantum_info,quantum_type);
endian=quantum_state.endian;
switch (quantum_type)
{
case IndexQuantum:
{
MagickBooleanType
range_exception;
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
range_exception=MagickFalse;
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=0; x < ((ssize_t) number_pixels-7); x+=8)
{
for (bit=0; bit < 8; bit++)
{
if (quantum_info->min_is_white == MagickFalse)
pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ?
0x00 : 0x01);
else
pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ?
0x00 : 0x01);
indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x+bit]];
q++;
}
p++;
}
for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++)
{
if (quantum_info->min_is_white == MagickFalse)
pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ?
0x00 : 0x01);
else
pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ?
0x00 : 0x01);
indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x+bit]];
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < ((ssize_t) number_pixels-1); x+=2)
{
pixel=(unsigned char) ((*p >> 4) & 0xf);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
q++;
pixel=(unsigned char) ((*p) & 0xf);
indexes[x+1]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x+1]];
p++;
q++;
}
for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++)
{
pixel=(unsigned char) ((*p++ >> 4) & 0xf);
indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x+bit]];
q++;
}
break;
}
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p+=quantum_info->pad;
q++;
}
break;
}
}
if (range_exception != MagickFalse)
(void) ThrowMagickException(exception,GetMagickModule(),
CorruptImageError,"InvalidColormapIndex","`%s'",image->filename);
break;
}
case IndexAlphaQuantum:
{
MagickBooleanType
range_exception;
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ImageError,"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
range_exception=MagickFalse;
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=0; x < ((ssize_t) number_pixels-3); x+=4)
{
for (bit=0; bit < 8; bit+=2)
{
if (quantum_info->min_is_white == MagickFalse)
pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ?
0x00 : 0x01);
else
pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ?
0x00 : 0x01);
indexes[x+bit/2]=(IndexPacket) (pixel == 0 ? 0 : 1);
q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange);
q->green=q->red;
q->blue=q->red;
q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit)))
== 0 ? TransparentOpacity : OpaqueOpacity);
q++;
}
}
for (bit=0; bit < (ssize_t) (number_pixels % 4); bit+=2)
{
if (quantum_info->min_is_white == MagickFalse)
pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ?
0x00 : 0x01);
else
pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ?
0x00 : 0x01);
indexes[x+bit/2]=(IndexPacket) (pixel == 0 ? 0 : 1);
q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange);
q->green=q->red;
q->blue=q->red;
q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit))) ==
0 ? TransparentOpacity : OpaqueOpacity);
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned char) ((*p >> 4) & 0xf);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
pixel=(unsigned char) ((*p) & 0xf);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
p++;
q++;
}
break;
}
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel),
&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
indexes[x]=PushColormapIndex(image,pixel,&range_exception);
*q=image->colormap[(ssize_t) indexes[x]];
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
if (range_exception != MagickFalse)
(void) ThrowMagickException(exception,GetMagickModule(),
CorruptImageError,"InvalidColormapIndex","`%s'",image->filename);
break;
}
case BGRQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
SetOpacityPixelComponent(q,OpaqueOpacity);
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range);
q->green=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->blue=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range);
p+=quantum_info->pad;
q++;
}
break;
}
if (quantum_info->quantum == 32U)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
case 12:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
unsigned short
pixel;
for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2)
{
p=PushShortPixel(endian,p,&pixel);
switch (x % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p=PushShortPixel(endian,p,&pixel);
switch ((x+1) % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p+=quantum_info->pad;
}
for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++)
{
p=PushShortPixel(endian,p,&pixel);
switch ((x+bit) % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p+=quantum_info->pad;
}
if (bit != 0)
p++;
break;
}
if (quantum_info->quantum == 32U)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
case BGRAQuantum:
case BGROQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
pixel=0;
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
p=PushLongPixel(endian,p,&pixel);
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 22) & 0x3ff) << 6)));
break;
}
case 1:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 12) & 0x3ff) << 6)));
break;
}
case 2:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 2) & 0x3ff) << 6)));
break;
}
}
switch (i)
{
case 0: q->red=(Quantum) (quantum); break;
case 1: q->green=(Quantum) (quantum); break;
case 2: q->blue=(Quantum) (quantum); break;
case 3: q->opacity=(Quantum) (QuantumRange-quantum); break;
}
n++;
}
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->red=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->green=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->blue=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(
(unsigned short) (pixel << 6)));
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
case GrayQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register Quantum
black,
white;
black=0;
white=(Quantum) QuantumRange;
if (quantum_info->min_is_white != MagickFalse)
{
black=(Quantum) QuantumRange;
white=0;
}
for (x=0; x < ((ssize_t) number_pixels-7); x+=8)
{
for (bit=0; bit < 8; bit++)
{
q->red=(((*p) & (1 << (7-bit))) == 0 ? black : white);
q->green=q->red;
q->blue=q->red;
q++;
}
p++;
}
for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++)
{
q->red=(((*p) & (0x01 << (7-bit))) == 0 ? black : white);
q->green=q->red;
q->blue=q->red;
q++;
}
if (bit != 0)
p++;
break;
}
case 4:
{
register unsigned char
pixel;
range=GetQuantumRange(image->depth);
for (x=0; x < ((ssize_t) number_pixels-1); x+=2)
{
pixel=(unsigned char) ((*p >> 4) & 0xf);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
q++;
pixel=(unsigned char) ((*p) & 0xf);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p++;
q++;
}
for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++)
{
pixel=(unsigned char) (*p++ >> 4);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
q++;
}
break;
}
case 8:
{
unsigned char
pixel;
if (quantum_info->min_is_white != MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
q->red=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
SetOpacityPixelComponent(q,OpaqueOpacity);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
SetOpacityPixelComponent(q,OpaqueOpacity);
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
if (image->endian != LSBEndian)
{
for (x=0; x < (ssize_t) (number_pixels-2); x+=3)
{
p=PushLongPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
p=PushLongPixel(endian,p,&pixel);
if (x++ < (ssize_t) (number_pixels-1))
{
q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
}
if (x++ < (ssize_t) number_pixels)
{
q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
}
break;
}
for (x=0; x < (ssize_t) (number_pixels-2); x+=3)
{
p=PushLongPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
p=PushLongPixel(endian,p,&pixel);
if (x++ < (ssize_t) (number_pixels-1))
{
q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
}
if (x++ < (ssize_t) number_pixels)
{
q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->green=q->red;
q->blue=q->red;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
case 12:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
unsigned short
pixel;
for (x=0; x < (ssize_t) (number_pixels-1); x+=2)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q->green=q->red;
q->blue=q->red;
q++;
p=PushShortPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
if (bit != 0)
p++;
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->min_is_white != MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case GrayAlphaQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=0; x < ((ssize_t) number_pixels-3); x+=4)
{
for (bit=0; bit < 8; bit+=2)
{
pixel=(unsigned char)
(((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01);
q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange);
q->green=q->red;
q->blue=q->red;
q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit)))
== 0 ? TransparentOpacity : OpaqueOpacity);
q++;
}
p++;
}
for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2)
{
pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01);
q->red=(Quantum) (pixel != 0 ? 0 : QuantumRange);
q->green=q->red;
q->blue=q->red;
q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit)))
== 0 ? TransparentOpacity : OpaqueOpacity);
q++;
}
if (bit != 0)
p++;
break;
}
case 4:
{
register unsigned char
pixel;
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned char) ((*p >> 4) & 0xf);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
pixel=(unsigned char) ((*p) & 0xf);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
p++;
q++;
}
break;
}
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
case 12:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
q->green=q->red;
q->blue=q->red;
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
q->green=q->red;
q->blue=q->red;
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
q->green=q->red;
q->blue=q->red;
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
q->green=q->red;
q->blue=q->red;
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q->green=q->red;
q->blue=q->red;
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case RedQuantum:
case CyanQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case GreenQuantum:
case MagentaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case BlueQuantum:
case YellowQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case AlphaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case BlackQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
indexes[x]=ScaleCharToQuantum(pixel);
p+=quantum_info->pad;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ScaleShortToQuantum(pixel);
p+=quantum_info->pad;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
indexes[x]=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
indexes[x]=ScaleLongToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
indexes[x]=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
indexes[x]=ScaleAnyToQuantum(pixel,range);
p+=quantum_info->pad;
q++;
}
break;
}
}
break;
}
case RGBQuantum:
case CbYCrQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
SetOpacityPixelComponent(q,OpaqueOpacity);
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range);
q->green=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range);
q->blue=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range);
p+=quantum_info->pad;
q++;
}
break;
}
if (quantum_info->quantum == 32U)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
case 12:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
unsigned short
pixel;
for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2)
{
p=PushShortPixel(endian,p,&pixel);
switch (x % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p=PushShortPixel(endian,p,&pixel);
switch ((x+1) % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p+=quantum_info->pad;
}
for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++)
{
p=PushShortPixel(endian,p,&pixel);
switch ((x+bit) % 3)
{
default:
case 0:
{
q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 1:
{
q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
break;
}
case 2:
{
q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range);
q++;
break;
}
}
p+=quantum_info->pad;
}
if (bit != 0)
p++;
break;
}
if (quantum_info->quantum == 32U)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
case RGBAQuantum:
case RGBOQuantum:
case CbYCrAQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 10:
{
pixel=0;
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
p=PushLongPixel(endian,p,&pixel);
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 22) & 0x3ff) << 6)));
break;
}
case 1:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 12) & 0x3ff) << 6)));
break;
}
case 2:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 2) & 0x3ff) << 6)));
break;
}
}
switch (i)
{
case 0: q->red=(Quantum) (quantum); break;
case 1: q->green=(Quantum) (quantum); break;
case 2: q->blue=(Quantum) (quantum); break;
case 3: q->opacity=(Quantum) (QuantumRange-quantum); break;
}
n++;
}
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->red=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->green=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->blue=ScaleShortToQuantum((unsigned short) (pixel << 6));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(
(unsigned short) (pixel << 6)));
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
case CMYKQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
indexes[x]=ScaleCharToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ScaleShortToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
indexes[x]=(IndexPacket) ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
indexes[x]=ScaleLongToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
indexes[x]=(IndexPacket) ClampToQuantum(pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
indexes[x]=ScaleAnyToQuantum(pixel,range);
q++;
}
break;
}
}
break;
}
case CMYKAQuantum:
case CMYKOQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushCharPixel(p,&pixel);
SetRedPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetGreenPixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
SetBluePixelComponent(q,ScaleCharToQuantum(pixel));
p=PushCharPixel(p,&pixel);
indexes[x]=ScaleCharToQuantum(pixel);
p=PushCharPixel(p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 16:
{
unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
q->red=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->green=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->blue=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ClampToQuantum((MagickRealType) QuantumRange*
HalfToSinglePrecision(pixel));
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(
(MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushShortPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleShortToQuantum(pixel));
p=PushShortPixel(endian,p,&pixel);
indexes[x]=ScaleShortToQuantum(pixel);
p=PushShortPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 32:
{
unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
float
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushFloatPixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
indexes[x]=(IndexPacket) ClampToQuantum(pixel);
p=PushFloatPixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushLongPixel(endian,p,&pixel);
SetRedPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetGreenPixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
SetBluePixelComponent(q,ScaleLongToQuantum(pixel));
p=PushLongPixel(endian,p,&pixel);
indexes[x]=ScaleLongToQuantum(pixel);
p=PushLongPixel(endian,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel));
p+=quantum_info->pad;
q++;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushDoublePixel(&quantum_state,p,&pixel);
q->red=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->green=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->blue=ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
indexes[x]=(IndexPacket) ClampToQuantum(pixel);
p=PushDoublePixel(&quantum_state,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel));
p=PushDoublePixel(&quantum_state,p,&pixel);
p+=quantum_info->pad;
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
indexes[x]=ScaleAnyToQuantum(pixel,range);
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
case CbYCrYQuantum:
{
switch (quantum_info->depth)
{
case 10:
{
Quantum
cbcr[4];
pixel=0;
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
for (x=0; x < (ssize_t) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
p=PushLongPixel(endian,p,&pixel);
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 22) & 0x3ff) << 6)));
break;
}
case 1:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 12) & 0x3ff) << 6)));
break;
}
case 2:
{
quantum=(size_t) (ScaleShortToQuantum(
(unsigned short) (((pixel >> 2) & 0x3ff) << 6)));
break;
}
}
cbcr[i]=(Quantum) (quantum);
n++;
}
p+=quantum_info->pad;
q->red=cbcr[1];
q->green=cbcr[0];
q->blue=cbcr[2];
q++;
q->red=cbcr[3];
q->green=cbcr[0];
q->blue=cbcr[2];
q++;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range));
p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel);
SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range));
q++;
}
break;
}
}
break;
}
default:
break;
}
if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum))
{
Quantum
quantum;
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
quantum=q->red;
q->red=q->green;
q->green=quantum;
q++;
}
}
if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum))
{
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q->opacity=(Quantum) GetAlphaPixelComponent(q);
q++;
}
}
if (quantum_info->alpha_type == DisassociatedQuantumAlpha)
{
MagickRealType
alpha;
register PixelPacket
*restrict q;
/*
Disassociate alpha.
*/
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
alpha=QuantumScale*((MagickRealType) QuantumRange-q->opacity);
alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha);
q->red=ClampToQuantum(alpha*q->red);
q->green=ClampToQuantum(alpha*q->green);
q->blue=ClampToQuantum(alpha*q->blue);
q++;
}
}
return(extent);
}