/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- RollFourier
- ForwardQuadrantSwap
- CorrectPhaseLHS
- ForwardFourier
- ForwardFourierTransform
- ForwardFourierTransformChannel
- ForwardFourierTransformImage
- InverseQuadrantSwap
- InverseFourier
- InverseFourierTransform
- InverseFourierTransformChannel
- InverseFourierTransformImage
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% FFFFF OOO U U RRRR IIIII EEEEE RRRR %
% F O O U U R R I E R R %
% FFF O O U U RRRR I EEE RRRR %
% F O O U U R R I E R R %
% F OOO UUU R R IIIII EEEEE R R %
% %
% %
% MagickCore Discrete Fourier Transform Methods %
% %
% Software Design %
% Sean Burke %
% Fred Weinhaus %
% John Cristy %
% July 2009 %
% %
% %
% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/cache.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/fourier.h"
#include "magick/log.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/property.h"
#include "magick/quantum-private.h"
#include "magick/thread-private.h"
#if defined(MAGICKCORE_FFTW_DELEGATE)
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
#include <complex.h>
#endif
#include <fftw3.h>
#if !defined(MAGICKCORE_HAVE_CABS)
#define cabs(z) (sqrt(z[0]*z[0]+z[1]*z[1]))
#endif
#if !defined(MAGICKCORE_HAVE_CARG)
#define carg(z) (atan2(cimag(z),creal(z)))
#endif
#if !defined(MAGICKCORE_HAVE_CIMAG)
#define cimag(z) (z[1])
#endif
#if !defined(MAGICKCORE_HAVE_CREAL)
#define creal(z) (z[0])
#endif
#endif
/*
Typedef declarations.
*/
typedef struct _FourierInfo
{
ChannelType
channel;
MagickBooleanType
modulus;
size_t
width,
height;
ssize_t
center;
} FourierInfo;
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% F o r w a r d F o u r i e r T r a n s f o r m I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ForwardFourierTransformImage() implements the discrete Fourier transform
% (DFT) of the image either as a magnitude / phase or real / imaginary image
% pair.
%
% The format of the ForwadFourierTransformImage method is:
%
% Image *ForwardFourierTransformImage(const Image *image,
% const MagickBooleanType modulus,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o modulus: if true, return as transform as a magnitude / phase pair
% otherwise a real / imaginary image pair.
%
% o exception: return any errors or warnings in this structure.
%
*/
#if defined(MAGICKCORE_FFTW_DELEGATE)
static MagickBooleanType RollFourier(const size_t width,const size_t height,
const ssize_t x_offset,const ssize_t y_offset,double *fourier)
{
double
*roll;
register ssize_t
i,
x;
ssize_t
u,
v,
y;
/*
Move zero frequency (DC, average color) from (0,0) to (width/2,height/2).
*/
roll=(double *) AcquireQuantumMemory((size_t) height,width*sizeof(*roll));
if (roll == (double *) NULL)
return(MagickFalse);
i=0L;
for (y=0L; y < (ssize_t) height; y++)
{
if (y_offset < 0L)
v=((y+y_offset) < 0L) ? y+y_offset+(ssize_t) height : y+y_offset;
else
v=((y+y_offset) > ((ssize_t) height-1L)) ? y+y_offset-(ssize_t) height :
y+y_offset;
for (x=0L; x < (ssize_t) width; x++)
{
if (x_offset < 0L)
u=((x+x_offset) < 0L) ? x+x_offset+(ssize_t) width : x+x_offset;
else
u=((x+x_offset) > ((ssize_t) width-1L)) ? x+x_offset-(ssize_t) width :
x+x_offset;
roll[v*width+u]=fourier[i++];
}
}
(void) CopyMagickMemory(fourier,roll,height*width*sizeof(*roll));
roll=(double *) RelinquishMagickMemory(roll);
return(MagickTrue);
}
static MagickBooleanType ForwardQuadrantSwap(const size_t width,
const size_t height,double *source,double *destination)
{
MagickBooleanType
status;
register ssize_t
x;
ssize_t
center,
y;
/*
Swap quadrants.
*/
center=(ssize_t) floor((double) width/2L)+1L;
status=RollFourier((size_t) center,height,0L,(ssize_t) height/2L,source);
if (status == MagickFalse)
return(MagickFalse);
for (y=0L; y < (ssize_t) height; y++)
for (x=0L; x < (ssize_t) (width/2L-1L); x++)
destination[width*y+x+width/2L]=source[center*y+x];
for (y=1; y < (ssize_t) height; y++)
for (x=0L; x < (ssize_t) (width/2L-1L); x++)
destination[width*(height-y)+width/2L-x-1L]=source[center*y+x+1L];
for (x=0L; x < (ssize_t) (width/2L); x++)
destination[-x+width/2L-1L]=destination[x+width/2L+1L];
return(MagickTrue);
}
static void CorrectPhaseLHS(const size_t width,const size_t height,
double *fourier)
{
register ssize_t
x;
ssize_t
y;
for (y=0L; y < (ssize_t) height; y++)
for (x=0L; x < (ssize_t) (width/2L); x++)
fourier[y*width+x]*=(-1.0);
}
static MagickBooleanType ForwardFourier(const FourierInfo *fourier_info,
Image *image,double *magnitude,double *phase,ExceptionInfo *exception)
{
CacheView
*magnitude_view,
*phase_view;
double
*magnitude_source,
*phase_source;
Image
*magnitude_image,
*phase_image;
MagickBooleanType
status;
register IndexPacket
*indexes;
register ssize_t
x;
register PixelPacket
*q;
ssize_t
i,
y;
magnitude_image=GetFirstImageInList(image);
phase_image=GetNextImageInList(image);
if (phase_image == (Image *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ImageSequenceRequired","`%s'",image->filename);
return(MagickFalse);
}
/*
Create "Fourier Transform" image from constituent arrays.
*/
magnitude_source=(double *) AcquireQuantumMemory((size_t)
fourier_info->height,fourier_info->width*sizeof(*magnitude_source));
if (magnitude_source == (double *) NULL)
return(MagickFalse);
(void) ResetMagickMemory(magnitude_source,0,fourier_info->height*
fourier_info->width*sizeof(*magnitude_source));
phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->width*sizeof(*phase_source));
if (phase_source == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
return(MagickFalse);
}
status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height,
magnitude,magnitude_source);
if (status != MagickFalse)
status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height,phase,
phase_source);
CorrectPhaseLHS(fourier_info->height,fourier_info->height,phase_source);
if (fourier_info->modulus != MagickFalse)
{
i=0L;
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
phase_source[i]/=(2.0*MagickPI);
phase_source[i]+=0.5;
i++;
}
}
magnitude_view=AcquireCacheView(magnitude_image);
phase_view=AcquireCacheView(phase_image);
i=0L;
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
q=GetCacheViewAuthenticPixels(magnitude_view,0L,y,fourier_info->height,1UL,
exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(magnitude_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
q->red=ClampToQuantum(QuantumRange*magnitude_source[i]);
break;
}
case GreenChannel:
{
q->green=ClampToQuantum(QuantumRange*magnitude_source[i]);
break;
}
case BlueChannel:
{
q->blue=ClampToQuantum(QuantumRange*magnitude_source[i]);
break;
}
case OpacityChannel:
{
q->opacity=ClampToQuantum(QuantumRange*magnitude_source[i]);
break;
}
case IndexChannel:
{
indexes[x]=ClampToQuantum(QuantumRange*magnitude_source[i]);
break;
}
case GrayChannels:
{
SetGrayPixelComponent(q,ClampToQuantum(QuantumRange*
magnitude_source[i]));
break;
}
}
i++;
q++;
}
status=SyncCacheViewAuthenticPixels(magnitude_view,exception);
if (status == MagickFalse)
break;
}
i=0L;
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
q=GetCacheViewAuthenticPixels(phase_view,0L,y,fourier_info->height,1UL,
exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(phase_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
q->red=ClampToQuantum(QuantumRange*phase_source[i]);
break;
}
case GreenChannel:
{
q->green=ClampToQuantum(QuantumRange*phase_source[i]);
break;
}
case BlueChannel:
{
q->blue=ClampToQuantum(QuantumRange*phase_source[i]);
break;
}
case OpacityChannel:
{
q->opacity=ClampToQuantum(QuantumRange*phase_source[i]);
break;
}
case IndexChannel:
{
indexes[x]=ClampToQuantum(QuantumRange*phase_source[i]);
break;
}
case GrayChannels:
{
SetGrayPixelComponent(q,ClampToQuantum(QuantumRange*phase_source[i]));
break;
}
}
i++;
q++;
}
status=SyncCacheViewAuthenticPixels(phase_view,exception);
if (status == MagickFalse)
break;
}
phase_view=DestroyCacheView(phase_view);
magnitude_view=DestroyCacheView(magnitude_view);
phase_source=(double *) RelinquishMagickMemory(phase_source);
magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
return(status);
}
static MagickBooleanType ForwardFourierTransform(FourierInfo *fourier_info,
const Image *image,double *magnitude,double *phase,ExceptionInfo *exception)
{
CacheView
*image_view;
double
n,
*source;
fftw_complex
*fourier;
fftw_plan
fftw_r2c_plan;
register const IndexPacket
*indexes;
register const PixelPacket
*p;
register ssize_t
i,
x;
ssize_t
y;
/*
Generate the forward Fourier transform.
*/
source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->width*sizeof(*source));
if (source == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
ResetMagickMemory(source,0,fourier_info->height*fourier_info->width*
sizeof(*source));
i=0L;
image_view=AcquireCacheView(image);
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
p=GetCacheViewVirtualPixels(image_view,0L,y,fourier_info->width,1UL,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
source[i]=QuantumScale*GetRedPixelComponent(p);
break;
}
case GreenChannel:
{
source[i]=QuantumScale*GetGreenPixelComponent(p);
break;
}
case BlueChannel:
{
source[i]=QuantumScale*GetBluePixelComponent(p);
break;
}
case OpacityChannel:
{
source[i]=QuantumScale*GetOpacityPixelComponent(p);
break;
}
case IndexChannel:
{
source[i]=QuantumScale*indexes[x];
break;
}
case GrayChannels:
{
source[i]=QuantumScale*GetGrayPixelComponent(p);
break;
}
}
i++;
p++;
}
}
image_view=DestroyCacheView(image_view);
fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->center*sizeof(*fourier));
if (fourier == (fftw_complex *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
source=(double *) RelinquishMagickMemory(source);
return(MagickFalse);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_ForwardFourierTransform)
#endif
fftw_r2c_plan=fftw_plan_dft_r2c_2d(fourier_info->width,fourier_info->width,
source,fourier,FFTW_ESTIMATE);
fftw_execute(fftw_r2c_plan);
fftw_destroy_plan(fftw_r2c_plan);
source=(double *) RelinquishMagickMemory(source);
/*
Normalize Fourier transform.
*/
n=(double) fourier_info->width*(double) fourier_info->width;
i=0L;
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->center; x++)
{
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
fourier[i]/=n;
#else
fourier[i][0]/=n;
fourier[i][1]/=n;
#endif
i++;
}
/*
Generate magnitude and phase (or real and imaginary).
*/
i=0L;
if (fourier_info->modulus != MagickFalse)
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->center; x++)
{
magnitude[i]=cabs(fourier[i]);
phase[i]=carg(fourier[i]);
i++;
}
else
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->center; x++)
{
magnitude[i]=creal(fourier[i]);
phase[i]=cimag(fourier[i]);
i++;
}
fourier=(fftw_complex *) RelinquishMagickMemory(fourier);
return(MagickTrue);
}
static MagickBooleanType ForwardFourierTransformChannel(const Image *image,
const ChannelType channel,const MagickBooleanType modulus,
Image *fourier_image,ExceptionInfo *exception)
{
double
*magnitude,
*phase;
fftw_complex
*fourier;
FourierInfo
fourier_info;
MagickBooleanType
status;
size_t
extent;
fourier_info.width=image->columns;
if ((image->columns != image->rows) || ((image->columns % 2) != 0) ||
((image->rows % 2) != 0))
{
extent=image->columns < image->rows ? image->rows : image->columns;
fourier_info.width=(extent & 0x01) == 1 ? extent+1UL : extent;
}
fourier_info.height=fourier_info.width;
fourier_info.center=(ssize_t) floor((double) fourier_info.width/2.0)+1L;
fourier_info.channel=channel;
fourier_info.modulus=modulus;
magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*magnitude));
if (magnitude == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
phase=(double *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*phase));
if (phase == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(MagickFalse);
}
fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*fourier));
if (fourier == (fftw_complex *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
phase=(double *) RelinquishMagickMemory(phase);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(MagickFalse);
}
status=ForwardFourierTransform(&fourier_info,image,magnitude,phase,exception);
if (status != MagickFalse)
status=ForwardFourier(&fourier_info,fourier_image,magnitude,phase,
exception);
fourier=(fftw_complex *) RelinquishMagickMemory(fourier);
phase=(double *) RelinquishMagickMemory(phase);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(status);
}
#endif
MagickExport Image *ForwardFourierTransformImage(const Image *image,
const MagickBooleanType modulus,ExceptionInfo *exception)
{
Image
*fourier_image;
fourier_image=NewImageList();
#if !defined(MAGICKCORE_FFTW_DELEGATE)
(void) modulus;
(void) ThrowMagickException(exception,GetMagickModule(),
MissingDelegateWarning,"DelegateLibrarySupportNotBuiltIn","`%s' (FFTW)",
image->filename);
#else
{
Image
*magnitude_image;
size_t
extent,
width;
width=image->columns;
if ((image->columns != image->rows) || ((image->columns % 2) != 0) ||
((image->rows % 2) != 0))
{
extent=image->columns < image->rows ? image->rows : image->columns;
width=(extent & 0x01) == 1 ? extent+1UL : extent;
}
magnitude_image=CloneImage(image,width,width,MagickFalse,exception);
if (magnitude_image != (Image *) NULL)
{
Image
*phase_image;
magnitude_image->storage_class=DirectClass;
magnitude_image->depth=32UL;
phase_image=CloneImage(image,width,width,MagickFalse,exception);
if (phase_image == (Image *) NULL)
magnitude_image=DestroyImage(magnitude_image);
else
{
MagickBooleanType
is_gray,
status;
phase_image->storage_class=DirectClass;
phase_image->depth=32UL;
AppendImageToList(&fourier_image,magnitude_image);
AppendImageToList(&fourier_image,phase_image);
status=MagickTrue;
is_gray=IsGrayImage(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel sections
#endif
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
if (is_gray != MagickFalse)
thread_status=ForwardFourierTransformChannel(image,
GrayChannels,modulus,fourier_image,exception);
else
thread_status=ForwardFourierTransformChannel(image,
RedChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (is_gray == MagickFalse)
thread_status=ForwardFourierTransformChannel(image,
GreenChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (is_gray == MagickFalse)
thread_status=ForwardFourierTransformChannel(image,
BlueChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (image->matte != MagickFalse)
thread_status=ForwardFourierTransformChannel(image,
OpacityChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (image->colorspace == CMYKColorspace)
thread_status=ForwardFourierTransformChannel(image,
IndexChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
}
if (status == MagickFalse)
fourier_image=DestroyImageList(fourier_image);
fftw_cleanup();
}
}
}
#endif
return(fourier_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I n v e r s e F o u r i e r T r a n s f o r m I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InverseFourierTransformImage() implements the inverse discrete Fourier
% transform (DFT) of the image either as a magnitude / phase or real /
% imaginary image pair.
%
% The format of the InverseFourierTransformImage method is:
%
% Image *InverseFourierTransformImage(const Image *magnitude_image,
% const Image *phase_image,const MagickBooleanType modulus,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o magnitude_image: the magnitude or real image.
%
% o phase_image: the phase or imaginary image.
%
% o modulus: if true, return transform as a magnitude / phase pair
% otherwise a real / imaginary image pair.
%
% o exception: return any errors or warnings in this structure.
%
*/
#if defined(MAGICKCORE_FFTW_DELEGATE)
static MagickBooleanType InverseQuadrantSwap(const size_t width,
const size_t height,const double *source,double *destination)
{
register ssize_t
x;
ssize_t
center,
y;
/*
Swap quadrants.
*/
center=(ssize_t) floor((double) width/2.0)+1L;
for (y=1L; y < (ssize_t) height; y++)
for (x=0L; x < (ssize_t) (width/2L+1L); x++)
destination[center*(height-y)-x+width/2L]=source[y*width+x];
for (y=0L; y < (ssize_t) height; y++)
destination[center*y]=source[y*width+width/2L];
for (x=0L; x < center; x++)
destination[x]=source[center-x-1L];
return(RollFourier(center,height,0L,(ssize_t) height/-2L,destination));
}
static MagickBooleanType InverseFourier(FourierInfo *fourier_info,
const Image *magnitude_image,const Image *phase_image,fftw_complex *fourier,
ExceptionInfo *exception)
{
CacheView
*magnitude_view,
*phase_view;
double
*magnitude,
*phase,
*magnitude_source,
*phase_source;
MagickBooleanType
status;
register const IndexPacket
*indexes;
register const PixelPacket
*p;
register ssize_t
i,
x;
ssize_t
y;
/*
Inverse fourier - read image and break down into a double array.
*/
magnitude_source=(double *) AcquireQuantumMemory((size_t)
fourier_info->height,fourier_info->width*sizeof(*magnitude_source));
if (magnitude_source == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
return(MagickFalse);
}
phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->width*sizeof(*phase_source));
if (phase_source == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
return(MagickFalse);
}
i=0L;
magnitude_view=AcquireCacheView(magnitude_image);
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
p=GetCacheViewVirtualPixels(magnitude_view,0L,y,fourier_info->width,1UL,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(magnitude_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
magnitude_source[i]=QuantumScale*GetRedPixelComponent(p);
break;
}
case GreenChannel:
{
magnitude_source[i]=QuantumScale*GetGreenPixelComponent(p);
break;
}
case BlueChannel:
{
magnitude_source[i]=QuantumScale*GetBluePixelComponent(p);
break;
}
case OpacityChannel:
{
magnitude_source[i]=QuantumScale*GetOpacityPixelComponent(p);
break;
}
case IndexChannel:
{
magnitude_source[i]=QuantumScale*indexes[x];
break;
}
case GrayChannels:
{
magnitude_source[i]=QuantumScale*GetGrayPixelComponent(p);
break;
}
}
i++;
p++;
}
}
i=0L;
phase_view=AcquireCacheView(phase_image);
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
p=GetCacheViewVirtualPixels(phase_view,0,y,fourier_info->width,1,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(phase_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
phase_source[i]=QuantumScale*GetRedPixelComponent(p);
break;
}
case GreenChannel:
{
phase_source[i]=QuantumScale*GetGreenPixelComponent(p);
break;
}
case BlueChannel:
{
phase_source[i]=QuantumScale*GetBluePixelComponent(p);
break;
}
case OpacityChannel:
{
phase_source[i]=QuantumScale*GetOpacityPixelComponent(p);
break;
}
case IndexChannel:
{
phase_source[i]=QuantumScale*indexes[x];
break;
}
case GrayChannels:
{
phase_source[i]=QuantumScale*GetGrayPixelComponent(p);
break;
}
}
i++;
p++;
}
}
if (fourier_info->modulus != MagickFalse)
{
i=0L;
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
phase_source[i]-=0.5;
phase_source[i]*=(2.0*MagickPI);
i++;
}
}
magnitude_view=DestroyCacheView(magnitude_view);
phase_view=DestroyCacheView(phase_view);
magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->center*sizeof(*magnitude));
if (magnitude == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
phase_source=(double *) RelinquishMagickMemory(phase_source);
return(MagickFalse);
}
status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
magnitude_source,magnitude);
magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
phase=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->width*sizeof(*phase));
if (phase == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
phase_source=(double *) RelinquishMagickMemory(phase_source);
return(MagickFalse);
}
CorrectPhaseLHS(fourier_info->width,fourier_info->width,phase_source);
if (status != MagickFalse)
status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
phase_source,phase);
phase_source=(double *) RelinquishMagickMemory(phase_source);
/*
Merge two sets.
*/
i=0L;
if (fourier_info->modulus != MagickFalse)
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->center; x++)
{
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
fourier[i]=magnitude[i]*cos(phase[i])+I*magnitude[i]*sin(phase[i]);
#else
fourier[i][0]=magnitude[i]*cos(phase[i]);
fourier[i][1]=magnitude[i]*sin(phase[i]);
#endif
i++;
}
else
for (y=0L; y < (ssize_t) fourier_info->height; y++)
for (x=0L; x < (ssize_t) fourier_info->center; x++)
{
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
fourier[i]=magnitude[i]+I*phase[i];
#else
fourier[i][0]=magnitude[i];
fourier[i][1]=phase[i];
#endif
i++;
}
phase=(double *) RelinquishMagickMemory(phase);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(status);
}
static MagickBooleanType InverseFourierTransform(FourierInfo *fourier_info,
fftw_complex *fourier,Image *image,ExceptionInfo *exception)
{
CacheView
*image_view;
double
*source;
fftw_plan
fftw_c2r_plan;
register IndexPacket
*indexes;
register PixelPacket
*q;
register ssize_t
i,
x;
ssize_t
y;
source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
fourier_info->width*sizeof(*source));
if (source == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_InverseFourierTransform)
#endif
{
fftw_c2r_plan=fftw_plan_dft_c2r_2d(fourier_info->width,fourier_info->height,
fourier,source,FFTW_ESTIMATE);
fftw_execute(fftw_c2r_plan);
fftw_destroy_plan(fftw_c2r_plan);
}
i=0L;
image_view=AcquireCacheView(image);
for (y=0L; y < (ssize_t) fourier_info->height; y++)
{
if (y >= (ssize_t) image->rows)
break;
q=GetCacheViewAuthenticPixels(image_view,0L,y,fourier_info->width >
image->columns ? image->columns : fourier_info->width,1UL,exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0L; x < (ssize_t) fourier_info->width; x++)
{
switch (fourier_info->channel)
{
case RedChannel:
default:
{
q->red=ClampToQuantum(QuantumRange*source[i]);
break;
}
case GreenChannel:
{
q->green=ClampToQuantum(QuantumRange*source[i]);
break;
}
case BlueChannel:
{
q->blue=ClampToQuantum(QuantumRange*source[i]);
break;
}
case OpacityChannel:
{
q->opacity=ClampToQuantum(QuantumRange*source[i]);
break;
}
case IndexChannel:
{
indexes[x]=ClampToQuantum(QuantumRange*source[i]);
break;
}
case GrayChannels:
{
SetGrayPixelComponent(q,ClampToQuantum(QuantumRange*source[i]));
break;
}
}
i++;
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
break;
}
image_view=DestroyCacheView(image_view);
source=(double *) RelinquishMagickMemory(source);
return(MagickTrue);
}
static MagickBooleanType InverseFourierTransformChannel(
const Image *magnitude_image,const Image *phase_image,
const ChannelType channel,const MagickBooleanType modulus,
Image *fourier_image,ExceptionInfo *exception)
{
double
*magnitude,
*phase;
fftw_complex
*fourier;
FourierInfo
fourier_info;
MagickBooleanType
status;
size_t
extent;
fourier_info.width=magnitude_image->columns;
if ((magnitude_image->columns != magnitude_image->rows) ||
((magnitude_image->columns % 2) != 0) ||
((magnitude_image->rows % 2) != 0))
{
extent=magnitude_image->columns < magnitude_image->rows ?
magnitude_image->rows : magnitude_image->columns;
fourier_info.width=(extent & 0x01) == 1 ? extent+1UL : extent;
}
fourier_info.height=fourier_info.width;
fourier_info.center=(ssize_t) floor((double) fourier_info.width/2.0)+1L;
fourier_info.channel=channel;
fourier_info.modulus=modulus;
magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*magnitude));
if (magnitude == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
return(MagickFalse);
}
phase=(double *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*phase));
if (phase == (double *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(MagickFalse);
}
fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info.height,
fourier_info.center*sizeof(*fourier));
if (fourier == (fftw_complex *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
magnitude_image->filename);
phase=(double *) RelinquishMagickMemory(phase);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(MagickFalse);
}
status=InverseFourier(&fourier_info,magnitude_image,phase_image,fourier,
exception);
if (status != MagickFalse)
status=InverseFourierTransform(&fourier_info,fourier,fourier_image,
exception);
fourier=(fftw_complex *) RelinquishMagickMemory(fourier);
phase=(double *) RelinquishMagickMemory(phase);
magnitude=(double *) RelinquishMagickMemory(magnitude);
return(status);
}
#endif
MagickExport Image *InverseFourierTransformImage(const Image *magnitude_image,
const Image *phase_image,const MagickBooleanType modulus,
ExceptionInfo *exception)
{
Image
*fourier_image;
assert(magnitude_image != (Image *) NULL);
assert(magnitude_image->signature == MagickSignature);
if (magnitude_image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
magnitude_image->filename);
if (phase_image == (Image *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ImageSequenceRequired","`%s'",magnitude_image->filename);
return((Image *) NULL);
}
#if !defined(MAGICKCORE_FFTW_DELEGATE)
fourier_image=(Image *) NULL;
(void) modulus;
(void) ThrowMagickException(exception,GetMagickModule(),
MissingDelegateWarning,"DelegateLibrarySupportNotBuiltIn","`%s' (FFTW)",
magnitude_image->filename);
#else
{
fourier_image=CloneImage(magnitude_image,magnitude_image->columns,
magnitude_image->rows,MagickFalse,exception);
if (fourier_image != (Image *) NULL)
{
MagickBooleanType
is_gray,
status;
status=MagickTrue;
is_gray=IsGrayImage(magnitude_image,exception);
if (is_gray != MagickFalse)
is_gray=IsGrayImage(phase_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel sections
#endif
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
if (is_gray != MagickFalse)
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,GrayChannels,modulus,fourier_image,exception);
else
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,RedChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (is_gray == MagickFalse)
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,GreenChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (is_gray == MagickFalse)
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,BlueChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (magnitude_image->matte != MagickFalse)
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,OpacityChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp section
#endif
{
MagickBooleanType
thread_status;
thread_status=MagickTrue;
if (magnitude_image->colorspace == CMYKColorspace)
thread_status=InverseFourierTransformChannel(magnitude_image,
phase_image,IndexChannel,modulus,fourier_image,exception);
if (thread_status == MagickFalse)
status=thread_status;
}
}
if (status == MagickFalse)
fourier_image=DestroyImage(fourier_image);
}
fftw_cleanup();
}
#endif
return(fourier_image);
}