root/Source/core/rendering/RenderTableSection.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setRowLogicalHeightToRowStyleLogicalHeight
  2. updateLogicalHeightForCell
  3. m_hasMultipleCellLevels
  4. styleDidChange
  5. willBeRemovedFromTree
  6. addChild
  7. ensureRows
  8. addCell
  9. rowHasOnlySpanningCells
  10. populateSpanningRowsHeightFromCell
  11. distributeExtraRowSpanHeightToPercentRows
  12. updatePositionIncreasedWithRowHeight
  13. distributeExtraRowSpanHeightToAutoRows
  14. distributeExtraRowSpanHeightToRemainingRows
  15. cellIsFullyIncludedInOtherCell
  16. compareRowSpanCellsInHeightDistributionOrder
  17. isHeightNeededForRowHavingOnlySpanningCells
  18. calcRowHeightHavingOnlySpanningCells
  19. updateRowsHeightHavingOnlySpanningCells
  20. distributeRowSpanHeightToRows
  21. updateBaselineForCell
  22. calcRowLogicalHeight
  23. layout
  24. distributeExtraLogicalHeightToPercentRows
  25. distributeExtraLogicalHeightToAutoRows
  26. distributeRemainingExtraLogicalHeight
  27. distributeExtraLogicalHeightToRows
  28. shouldFlexCellChild
  29. layoutRows
  30. computeOverflowFromCells
  31. computeOverflowFromCells
  32. calcBlockDirectionOuterBorder
  33. calcInlineDirectionOuterBorder
  34. recalcOuterBorder
  35. firstLineBoxBaseline
  36. paint
  37. compareCellPositions
  38. compareCellPositionsWithOverflowingCells
  39. paintCell
  40. logicalRectForWritingModeAndDirection
  41. dirtiedRows
  42. dirtiedColumns
  43. spannedRows
  44. spannedColumns
  45. paintObject
  46. imageChanged
  47. recalcCells
  48. rowLogicalHeightChanged
  49. setNeedsCellRecalc
  50. numColumns
  51. borderAdjoiningStartCell
  52. borderAdjoiningEndCell
  53. firstRowCellAdjoiningTableStart
  54. firstRowCellAdjoiningTableEnd
  55. appendColumn
  56. splitColumn
  57. nodeAtPoint
  58. removeCachedCollapsedBorders
  59. setCachedCollapsedBorder
  60. cachedCollapsedBorder
  61. createAnonymousWithParentRenderer
  62. setLogicalPositionForCell

/*
 * Copyright (C) 1997 Martin Jones (mjones@kde.org)
 *           (C) 1997 Torben Weis (weis@kde.org)
 *           (C) 1998 Waldo Bastian (bastian@kde.org)
 *           (C) 1999 Lars Knoll (knoll@kde.org)
 *           (C) 1999 Antti Koivisto (koivisto@kde.org)
 * Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009, 2010 Apple Inc. All rights reserved.
 * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include "core/rendering/RenderTableSection.h"

#include <limits>
#include "core/rendering/GraphicsContextAnnotator.h"
#include "core/rendering/HitTestResult.h"
#include "core/rendering/LayoutRectRecorder.h"
#include "core/rendering/PaintInfo.h"
#include "core/rendering/RenderTableCell.h"
#include "core/rendering/RenderTableCol.h"
#include "core/rendering/RenderTableRow.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/SubtreeLayoutScope.h"
#include "wtf/HashSet.h"

using namespace std;

namespace WebCore {

using namespace HTMLNames;

// Those 2 variables are used to balance the memory consumption vs the repaint time on big tables.
static unsigned gMinTableSizeToUseFastPaintPathWithOverflowingCell = 75 * 75;
static float gMaxAllowedOverflowingCellRatioForFastPaintPath = 0.1f;

static inline void setRowLogicalHeightToRowStyleLogicalHeight(RenderTableSection::RowStruct& row)
{
    ASSERT(row.rowRenderer);
    row.logicalHeight = row.rowRenderer->style()->logicalHeight();
}

static inline void updateLogicalHeightForCell(RenderTableSection::RowStruct& row, const RenderTableCell* cell)
{
    // We ignore height settings on rowspan cells.
    if (cell->rowSpan() != 1)
        return;

    Length logicalHeight = cell->style()->logicalHeight();
    if (logicalHeight.isPositive()) {
        Length cRowLogicalHeight = row.logicalHeight;
        switch (logicalHeight.type()) {
        case Percent:
            if (!(cRowLogicalHeight.isPercent())
                || (cRowLogicalHeight.isPercent() && cRowLogicalHeight.percent() < logicalHeight.percent()))
                row.logicalHeight = logicalHeight;
            break;
        case Fixed:
            if (cRowLogicalHeight.type() < Percent
                || (cRowLogicalHeight.isFixed() && cRowLogicalHeight.value() < logicalHeight.value()))
                row.logicalHeight = logicalHeight;
            break;
        default:
            break;
        }
    }
}


RenderTableSection::RenderTableSection(Element* element)
    : RenderBox(element)
    , m_cCol(0)
    , m_cRow(0)
    , m_outerBorderStart(0)
    , m_outerBorderEnd(0)
    , m_outerBorderBefore(0)
    , m_outerBorderAfter(0)
    , m_needsCellRecalc(false)
    , m_hasMultipleCellLevels(false)
{
    // init RenderObject attributes
    setInline(false); // our object is not Inline
}

RenderTableSection::~RenderTableSection()
{
}

void RenderTableSection::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
    RenderBox::styleDidChange(diff, oldStyle);
    propagateStyleToAnonymousChildren();

    // If border was changed, notify table.
    RenderTable* table = this->table();
    if (table && !table->selfNeedsLayout() && !table->normalChildNeedsLayout() && oldStyle && oldStyle->border() != style()->border())
        table->invalidateCollapsedBorders();
}

void RenderTableSection::willBeRemovedFromTree()
{
    RenderBox::willBeRemovedFromTree();

    // Preventively invalidate our cells as we may be re-inserted into
    // a new table which would require us to rebuild our structure.
    setNeedsCellRecalc();
}

void RenderTableSection::addChild(RenderObject* child, RenderObject* beforeChild)
{
    if (!child->isTableRow()) {
        RenderObject* last = beforeChild;
        if (!last)
            last = lastChild();
        if (last && last->isAnonymous() && !last->isBeforeOrAfterContent()) {
            if (beforeChild == last)
                beforeChild = last->firstChild();
            last->addChild(child, beforeChild);
            return;
        }

        if (beforeChild && !beforeChild->isAnonymous() && beforeChild->parent() == this) {
            RenderObject* row = beforeChild->previousSibling();
            if (row && row->isTableRow() && row->isAnonymous()) {
                row->addChild(child);
                return;
            }
        }

        // If beforeChild is inside an anonymous cell/row, insert into the cell or into
        // the anonymous row containing it, if there is one.
        RenderObject* lastBox = last;
        while (lastBox && lastBox->parent()->isAnonymous() && !lastBox->isTableRow())
            lastBox = lastBox->parent();
        if (lastBox && lastBox->isAnonymous() && !lastBox->isBeforeOrAfterContent()) {
            lastBox->addChild(child, beforeChild);
            return;
        }

        RenderObject* row = RenderTableRow::createAnonymousWithParentRenderer(this);
        addChild(row, beforeChild);
        row->addChild(child);
        return;
    }

    if (beforeChild)
        setNeedsCellRecalc();

    unsigned insertionRow = m_cRow;
    ++m_cRow;
    m_cCol = 0;

    ensureRows(m_cRow);

    RenderTableRow* row = toRenderTableRow(child);
    m_grid[insertionRow].rowRenderer = row;
    row->setRowIndex(insertionRow);

    if (!beforeChild)
        setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);

    if (beforeChild && beforeChild->parent() != this)
        beforeChild = splitAnonymousBoxesAroundChild(beforeChild);

    ASSERT(!beforeChild || beforeChild->isTableRow());
    RenderBox::addChild(child, beforeChild);
}

void RenderTableSection::ensureRows(unsigned numRows)
{
    if (numRows <= m_grid.size())
        return;

    unsigned oldSize = m_grid.size();
    m_grid.grow(numRows);

    unsigned effectiveColumnCount = max(1u, table()->numEffCols());
    for (unsigned row = oldSize; row < m_grid.size(); ++row)
        m_grid[row].row.grow(effectiveColumnCount);
}

void RenderTableSection::addCell(RenderTableCell* cell, RenderTableRow* row)
{
    // We don't insert the cell if we need cell recalc as our internal columns' representation
    // will have drifted from the table's representation. Also recalcCells will call addCell
    // at a later time after sync'ing our columns' with the table's.
    if (needsCellRecalc())
        return;

    unsigned rSpan = cell->rowSpan();
    unsigned cSpan = cell->colSpan();
    const Vector<RenderTable::ColumnStruct>& columns = table()->columns();
    unsigned nCols = columns.size();
    unsigned insertionRow = row->rowIndex();

    // ### mozilla still seems to do the old HTML way, even for strict DTD
    // (see the annotation on table cell layouting in the CSS specs and the testcase below:
    // <TABLE border>
    // <TR><TD>1 <TD rowspan="2">2 <TD>3 <TD>4
    // <TR><TD colspan="2">5
    // </TABLE>
    while (m_cCol < nCols && (cellAt(insertionRow, m_cCol).hasCells() || cellAt(insertionRow, m_cCol).inColSpan))
        m_cCol++;

    updateLogicalHeightForCell(m_grid[insertionRow], cell);

    ensureRows(insertionRow + rSpan);

    m_grid[insertionRow].rowRenderer = row;

    unsigned col = m_cCol;
    // tell the cell where it is
    bool inColSpan = false;
    while (cSpan) {
        unsigned currentSpan;
        if (m_cCol >= nCols) {
            table()->appendColumn(cSpan);
            currentSpan = cSpan;
        } else {
            if (cSpan < columns[m_cCol].span)
                table()->splitColumn(m_cCol, cSpan);
            currentSpan = columns[m_cCol].span;
        }
        for (unsigned r = 0; r < rSpan; r++) {
            CellStruct& c = cellAt(insertionRow + r, m_cCol);
            ASSERT(cell);
            c.cells.append(cell);
            // If cells overlap then we take the slow path for painting.
            if (c.cells.size() > 1)
                m_hasMultipleCellLevels = true;
            if (inColSpan)
                c.inColSpan = true;
        }
        m_cCol++;
        cSpan -= currentSpan;
        inColSpan = true;
    }
    cell->setCol(table()->effColToCol(col));
}

bool RenderTableSection::rowHasOnlySpanningCells(unsigned row)
{
    unsigned totalCols = m_grid[row].row.size();

    if (!totalCols)
        return false;

    for (unsigned col = 0; col < totalCols; col++) {
        const CellStruct& rowSpanCell = cellAt(row, col);

        // Empty cell is not a valid cell so it is not a rowspan cell.
        if (rowSpanCell.cells.isEmpty())
            return false;

        if (rowSpanCell.cells[0]->rowSpan() == 1)
            return false;
    }

    return true;
}

void RenderTableSection::populateSpanningRowsHeightFromCell(RenderTableCell* cell, struct SpanningRowsHeight& spanningRowsHeight)
{
    const unsigned rowSpan = cell->rowSpan();
    const unsigned rowIndex = cell->rowIndex();

    spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing = cell->logicalHeightForRowSizing();

    spanningRowsHeight.rowHeight.resize(rowSpan);
    spanningRowsHeight.totalRowsHeight = 0;
    for (unsigned row = 0; row < rowSpan; row++) {
        unsigned actualRow = row + rowIndex;

        spanningRowsHeight.rowHeight[row] = m_rowPos[actualRow + 1] - m_rowPos[actualRow] - borderSpacingForRow(actualRow);
        if (!spanningRowsHeight.rowHeight[row])
            spanningRowsHeight.isAnyRowWithOnlySpanningCells |= rowHasOnlySpanningCells(actualRow);

        spanningRowsHeight.totalRowsHeight += spanningRowsHeight.rowHeight[row];
        spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing -= borderSpacingForRow(actualRow);
    }
    // We don't span the following row so its border-spacing (if any) should be included.
    spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing += borderSpacingForRow(rowIndex + rowSpan - 1);
}

void RenderTableSection::distributeExtraRowSpanHeightToPercentRows(RenderTableCell* cell, int totalPercent, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
    if (!extraRowSpanningHeight || !totalPercent)
        return;

    const unsigned rowSpan = cell->rowSpan();
    const unsigned rowIndex = cell->rowIndex();
    int percent = min(totalPercent, 100);
    const int tableHeight = m_rowPos[m_grid.size()] + extraRowSpanningHeight;

    // Our algorithm matches Firefox. Extra spanning height would be distributed Only in first percent height rows
    // those total percent is 100. Other percent rows would be uneffected even extra spanning height is remain.
    int accumulatedPositionIncrease = 0;
    for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
        if (percent > 0 && extraRowSpanningHeight > 0) {
            if (m_grid[row].logicalHeight.isPercent()) {
                int toAdd = (tableHeight * m_grid[row].logicalHeight.percent() / 100) - rowsHeight[row - rowIndex];
                // FIXME: Note that this is wrong if we have a percentage above 100% and may make us grow
                // above the available space.

                toAdd = min(toAdd, extraRowSpanningHeight);
                accumulatedPositionIncrease += toAdd;
                extraRowSpanningHeight -= toAdd;
                percent -= m_grid[row].logicalHeight.percent();
            }
        }
        m_rowPos[row + 1] += accumulatedPositionIncrease;
    }
}

// Sometimes the multiplication of the 2 values below will overflow an integer.
// So we convert the parameters to 'long long' instead of 'int' to avoid the
// problem in this function.
static void updatePositionIncreasedWithRowHeight(long long extraHeight, long long rowHeight, long long totalHeight, int& accumulatedPositionIncrease, int& remainder)
{
    COMPILE_ASSERT(sizeof(long long int) > sizeof(int), int_should_be_less_than_longlong);

    accumulatedPositionIncrease += (extraHeight * rowHeight) / totalHeight;
    remainder += (extraHeight * rowHeight) % totalHeight;
}

void RenderTableSection::distributeExtraRowSpanHeightToAutoRows(RenderTableCell* cell, int totalAutoRowsHeight, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
    if (!extraRowSpanningHeight || !totalAutoRowsHeight)
        return;

    const unsigned rowSpan = cell->rowSpan();
    const unsigned rowIndex = cell->rowIndex();
    int accumulatedPositionIncrease = 0;
    int remainder = 0;

    // Aspect ratios of auto rows should not change otherwise table may look different than user expected.
    // So extra height distributed in auto spanning rows based on their weight in spanning cell.
    for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
        if (m_grid[row].logicalHeight.isAuto()) {
            updatePositionIncreasedWithRowHeight(extraRowSpanningHeight, rowsHeight[row - rowIndex], totalAutoRowsHeight, accumulatedPositionIncrease, remainder);

            // While whole extra spanning height is distributing in auto spanning rows, rational parts remains
            // in every integer division. So accumulating all remainder part in integer division and when total remainder
            // is equvalent to divisor then 1 unit increased in row position.
            // Note that this algorithm is biased towards adding more space towards the lower rows.
            if (remainder >= totalAutoRowsHeight) {
                remainder -= totalAutoRowsHeight;
                accumulatedPositionIncrease++;
            }
        }
        m_rowPos[row + 1] += accumulatedPositionIncrease;
    }

    ASSERT(!remainder);

    extraRowSpanningHeight -= accumulatedPositionIncrease;
}

void RenderTableSection::distributeExtraRowSpanHeightToRemainingRows(RenderTableCell* cell, int totalRemainingRowsHeight, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
    if (!extraRowSpanningHeight || !totalRemainingRowsHeight)
        return;

    const unsigned rowSpan = cell->rowSpan();
    const unsigned rowIndex = cell->rowIndex();
    int accumulatedPositionIncrease = 0;
    int remainder = 0;

    // Aspect ratios of the rows should not change otherwise table may look different than user expected.
    // So extra height distribution in remaining spanning rows based on their weight in spanning cell.
    for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
        if (!m_grid[row].logicalHeight.isPercent()) {
            updatePositionIncreasedWithRowHeight(extraRowSpanningHeight, rowsHeight[row - rowIndex], totalRemainingRowsHeight, accumulatedPositionIncrease, remainder);

            // While whole extra spanning height is distributing in remaining spanning rows, rational parts remains
            // in every integer division. So accumulating all remainder part in integer division and when total remainder
            // is equvalent to divisor then 1 unit increased in row position.
            // Note that this algorithm is biased towards adding more space towards the lower rows.
            if (remainder >= totalRemainingRowsHeight) {
                remainder -= totalRemainingRowsHeight;
                accumulatedPositionIncrease++;
            }
        }
        m_rowPos[row + 1] += accumulatedPositionIncrease;
    }

    ASSERT(!remainder);

    extraRowSpanningHeight -= accumulatedPositionIncrease;
}

static bool cellIsFullyIncludedInOtherCell(const RenderTableCell* cell1, const RenderTableCell* cell2)
{
    return (cell1->rowIndex() >= cell2->rowIndex() && (cell1->rowIndex() + cell1->rowSpan()) <= (cell2->rowIndex() + cell2->rowSpan()));
}

// To avoid unneeded extra height distributions, we apply the following sorting algorithm:
static bool compareRowSpanCellsInHeightDistributionOrder(const RenderTableCell* cell1, const RenderTableCell* cell2)
{
    // Sorting bigger height cell first if cells are at same index with same span because we will skip smaller
    // height cell to distribute it's extra height.
    if (cell1->rowIndex() == cell2->rowIndex() && cell1->rowSpan() == cell2->rowSpan())
        return (cell1->logicalHeightForRowSizing() > cell2->logicalHeightForRowSizing());
    // Sorting inner most cell first because if inner spanning cell'e extra height is distributed then outer
    // spanning cell's extra height will adjust accordingly. In reverse order, there is more chances that outer
    // spanning cell's height will exceed than defined by user.
    if (cellIsFullyIncludedInOtherCell(cell1, cell2))
        return true;
    // Sorting lower row index first because first we need to apply the extra height of spanning cell which
    // comes first in the table so lower rows's position would increment in sequence.
    if (!cellIsFullyIncludedInOtherCell(cell2, cell1))
        return (cell1->rowIndex() < cell2->rowIndex());

    return false;
}

bool RenderTableSection::isHeightNeededForRowHavingOnlySpanningCells(unsigned row)
{
    unsigned totalCols = m_grid[row].row.size();

    if (!totalCols)
        return false;

    for (unsigned col = 0; col < totalCols; col++) {
        const CellStruct& rowSpanCell = cellAt(row, col);

        if (rowSpanCell.cells.size()) {
            RenderTableCell* cell = rowSpanCell.cells[0];
            const unsigned rowIndex = cell->rowIndex();
            const unsigned rowSpan = cell->rowSpan();
            int totalRowSpanCellHeight = 0;

            for (unsigned row = 0; row < rowSpan; row++) {
                unsigned actualRow = row + rowIndex;
                totalRowSpanCellHeight += m_rowPos[actualRow + 1] - m_rowPos[actualRow];
            }
            totalRowSpanCellHeight -= borderSpacingForRow(rowIndex + rowSpan - 1);

            if (totalRowSpanCellHeight < cell->logicalHeightForRowSizing())
                return true;
        }
    }

    return false;
}

unsigned RenderTableSection::calcRowHeightHavingOnlySpanningCells(unsigned row)
{
    ASSERT(rowHasOnlySpanningCells(row));

    unsigned totalCols = m_grid[row].row.size();

    if (!totalCols)
        return 0;

    unsigned rowHeight = 0;

    for (unsigned col = 0; col < totalCols; col++) {
        const CellStruct& rowSpanCell = cellAt(row, col);
        if (rowSpanCell.cells.size() && rowSpanCell.cells[0]->rowSpan() > 1)
            rowHeight = max(rowHeight, rowSpanCell.cells[0]->logicalHeightForRowSizing() / rowSpanCell.cells[0]->rowSpan());
    }

    return rowHeight;
}

void RenderTableSection::updateRowsHeightHavingOnlySpanningCells(RenderTableCell* cell, struct SpanningRowsHeight& spanningRowsHeight)
{
    ASSERT(spanningRowsHeight.rowHeight.size());

    int accumulatedPositionIncrease = 0;
    const unsigned rowSpan = cell->rowSpan();
    const unsigned rowIndex = cell->rowIndex();

    ASSERT_UNUSED(rowSpan, rowSpan == spanningRowsHeight.rowHeight.size());

    for (unsigned row = 0; row < spanningRowsHeight.rowHeight.size(); row++) {
        unsigned actualRow = row + rowIndex;
        if (!spanningRowsHeight.rowHeight[row] && rowHasOnlySpanningCells(actualRow) && isHeightNeededForRowHavingOnlySpanningCells(actualRow)) {
            spanningRowsHeight.rowHeight[row] = calcRowHeightHavingOnlySpanningCells(actualRow);
            accumulatedPositionIncrease += spanningRowsHeight.rowHeight[row];
        }
        m_rowPos[actualRow + 1] += accumulatedPositionIncrease;
    }

    spanningRowsHeight.totalRowsHeight += accumulatedPositionIncrease;
}

// Distribute rowSpan cell height in rows those comes in rowSpan cell based on the ratio of row's height if
// 1. RowSpan cell height is greater then the total height of rows in rowSpan cell
void RenderTableSection::distributeRowSpanHeightToRows(SpanningRenderTableCells& rowSpanCells)
{
    ASSERT(rowSpanCells.size());

    // 'rowSpanCells' list is already sorted based on the cells rowIndex in ascending order
    // Arrange row spanning cell in the order in which we need to process first.
    std::sort(rowSpanCells.begin(), rowSpanCells.end(), compareRowSpanCellsInHeightDistributionOrder);

    unsigned extraHeightToPropagate = 0;
    unsigned lastRowIndex = 0;
    unsigned lastRowSpan = 0;

    for (unsigned i = 0; i < rowSpanCells.size(); i++) {
        RenderTableCell* cell = rowSpanCells[i];

        unsigned rowIndex = cell->rowIndex();

        unsigned rowSpan = cell->rowSpan();

        unsigned spanningCellEndIndex = rowIndex + rowSpan;
        unsigned lastSpanningCellEndIndex = lastRowIndex + lastRowSpan;

        // Only heightest spanning cell will distribute it's extra height in row if more then one spanning cells
        // present at same level.
        if (rowIndex == lastRowIndex && rowSpan == lastRowSpan)
            continue;

        int originalBeforePosition = m_rowPos[spanningCellEndIndex];

        // When 2 spanning cells are ending at same row index then while extra height distribution of first spanning
        // cell updates position of the last row so getting the original position of the last row in second spanning
        // cell need to reduce the height changed by first spanning cell.
        if (spanningCellEndIndex == lastSpanningCellEndIndex)
            originalBeforePosition -= extraHeightToPropagate;

        if (extraHeightToPropagate) {
            for (unsigned row = lastSpanningCellEndIndex + 1; row <= spanningCellEndIndex; row++)
                m_rowPos[row] += extraHeightToPropagate;
        }

        lastRowIndex = rowIndex;
        lastRowSpan = rowSpan;

        struct SpanningRowsHeight spanningRowsHeight;

        populateSpanningRowsHeightFromCell(cell, spanningRowsHeight);

        // Here we are handling only row(s) who have only rowspanning cells and do not have any empty cell.
        if (spanningRowsHeight.isAnyRowWithOnlySpanningCells)
            updateRowsHeightHavingOnlySpanningCells(cell, spanningRowsHeight);

        // This code handle row(s) that have rowspanning cell(s) and at least one empty cell.
        // Such rows are not handled below and end up having a height of 0. That would mean
        // content overlapping if one of their cells has any content. To avoid the problem, we
        // add all the remaining spanning cells' height to the last spanned row.
        // This means that we could grow a row past its 'height' or break percentage spreading
        // however this is better than overlapping content.
        // FIXME: Is there a better algorithm?
        if (!spanningRowsHeight.totalRowsHeight) {
            if (spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing)
                m_rowPos[spanningCellEndIndex] += spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing + borderSpacingForRow(spanningCellEndIndex - 1);

            extraHeightToPropagate = m_rowPos[spanningCellEndIndex] - originalBeforePosition;
            continue;
        }

        if (spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing <= spanningRowsHeight.totalRowsHeight) {
            extraHeightToPropagate = m_rowPos[rowIndex + rowSpan] - originalBeforePosition;
            continue;
        }

        // Below we are handling only row(s) who have at least one visible cell without rowspan value.
        int totalPercent = 0;
        int totalAutoRowsHeight = 0;
        int totalRemainingRowsHeight = spanningRowsHeight.totalRowsHeight;

        // FIXME: Inner spanning cell height should not change if it have fixed height when it's parent spanning cell
        // is distributing it's extra height in rows.

        // Calculate total percentage, total auto rows height and total rows height except percent rows.
        for (unsigned row = rowIndex; row < spanningCellEndIndex; row++) {
            if (m_grid[row].logicalHeight.isPercent()) {
                totalPercent += m_grid[row].logicalHeight.percent();
                totalRemainingRowsHeight -= spanningRowsHeight.rowHeight[row - rowIndex];
            } else if (m_grid[row].logicalHeight.isAuto()) {
                totalAutoRowsHeight += spanningRowsHeight.rowHeight[row - rowIndex];
            }
        }

        int extraRowSpanningHeight = spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing - spanningRowsHeight.totalRowsHeight;

        distributeExtraRowSpanHeightToPercentRows(cell, totalPercent, extraRowSpanningHeight, spanningRowsHeight.rowHeight);
        distributeExtraRowSpanHeightToAutoRows(cell, totalAutoRowsHeight, extraRowSpanningHeight, spanningRowsHeight.rowHeight);
        distributeExtraRowSpanHeightToRemainingRows(cell, totalRemainingRowsHeight, extraRowSpanningHeight, spanningRowsHeight.rowHeight);

        ASSERT(!extraRowSpanningHeight);

        // Getting total changed height in the table
        extraHeightToPropagate = m_rowPos[spanningCellEndIndex] - originalBeforePosition;
    }

    if (extraHeightToPropagate) {
        // Apply changed height by rowSpan cells to rows present at the end of the table
        for (unsigned row = lastRowIndex + lastRowSpan + 1; row <= m_grid.size(); row++)
            m_rowPos[row] += extraHeightToPropagate;
    }
}

// Find out the baseline of the cell
// If the cell's baseline is more then the row's baseline then the cell's baseline become the row's baseline
// and if the row's baseline goes out of the row's boundries then adjust row height accordingly.
void RenderTableSection::updateBaselineForCell(RenderTableCell* cell, unsigned row, LayoutUnit& baselineDescent)
{
    if (!cell->isBaselineAligned())
        return;

    // Ignoring the intrinsic padding as it depends on knowing the row's baseline, which won't be accurate
    // until the end of this function.
    LayoutUnit baselinePosition = cell->cellBaselinePosition() - cell->intrinsicPaddingBefore();
    if (baselinePosition > cell->borderBefore() + (cell->paddingBefore() - cell->intrinsicPaddingBefore())) {
        m_grid[row].baseline = max(m_grid[row].baseline, baselinePosition);

        int cellStartRowBaselineDescent = 0;
        if (cell->rowSpan() == 1) {
            baselineDescent = max(baselineDescent, cell->logicalHeightForRowSizing() - baselinePosition);
            cellStartRowBaselineDescent = baselineDescent;
        }
        m_rowPos[row + 1] = max<int>(m_rowPos[row + 1], m_rowPos[row] + m_grid[row].baseline + cellStartRowBaselineDescent);
    }
}

int RenderTableSection::calcRowLogicalHeight()
{
#ifndef NDEBUG
    SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif

    ASSERT(!needsLayout());

    RenderTableCell* cell;

    LayoutStateMaintainer statePusher(*this);

    m_rowPos.resize(m_grid.size() + 1);

    // We ignore the border-spacing on any non-top section as it is already included in the previous section's last row position.
    if (this == table()->topSection())
        m_rowPos[0] = table()->vBorderSpacing();
    else
        m_rowPos[0] = 0;

    SpanningRenderTableCells rowSpanCells;
#ifndef NDEBUG
    HashSet<const RenderTableCell*> uniqueCells;
#endif

    for (unsigned r = 0; r < m_grid.size(); r++) {
        m_grid[r].baseline = 0;
        LayoutUnit baselineDescent = 0;

        // Our base size is the biggest logical height from our cells' styles (excluding row spanning cells).
        m_rowPos[r + 1] = max(m_rowPos[r] + minimumValueForLength(m_grid[r].logicalHeight, 0).round(), 0);

        Row& row = m_grid[r].row;
        unsigned totalCols = row.size();
        RenderTableCell* lastRowSpanCell = 0;

        for (unsigned c = 0; c < totalCols; c++) {
            CellStruct& current = cellAt(r, c);
            for (unsigned i = 0; i < current.cells.size(); i++) {
                cell = current.cells[i];
                if (current.inColSpan && cell->rowSpan() == 1)
                    continue;

                if (cell->rowSpan() > 1) {
                    // For row spanning cells, we only handle them for the first row they span. This ensures we take their baseline into account.
                    if (lastRowSpanCell != cell && cell->rowIndex() == r) {
#ifndef NDEBUG
                        ASSERT(!uniqueCells.contains(cell));
                        uniqueCells.add(cell);
#endif

                        rowSpanCells.append(cell);
                        lastRowSpanCell = cell;

                        // Find out the baseline. The baseline is set on the first row in a rowSpan.
                        updateBaselineForCell(cell, r, baselineDescent);
                    }
                    continue;
                }

                ASSERT(cell->rowSpan() == 1);

                if (cell->hasOverrideHeight()) {
                    if (!statePusher.didPush()) {
                        // Technically, we should also push state for the row, but since
                        // rows don't push a coordinate transform, that's not necessary.
                        statePusher.push(*this, locationOffset());
                    }
                    cell->clearIntrinsicPadding();
                    cell->clearOverrideSize();
                    cell->forceChildLayout();
                }

                m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[r] + cell->logicalHeightForRowSizing());

                // Find out the baseline.
                updateBaselineForCell(cell, r, baselineDescent);
            }
        }

        // Add the border-spacing to our final position.
        m_rowPos[r + 1] += borderSpacingForRow(r);
        m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[r]);
    }

    if (!rowSpanCells.isEmpty())
        distributeRowSpanHeightToRows(rowSpanCells);

    ASSERT(!needsLayout());

    return m_rowPos[m_grid.size()];
}

void RenderTableSection::layout()
{
    ASSERT(needsLayout());
    ASSERT(!needsCellRecalc());
    ASSERT(!table()->needsSectionRecalc());

    LayoutRectRecorder recorder(*this);

    // addChild may over-grow m_grid but we don't want to throw away the memory too early as addChild
    // can be called in a loop (e.g during parsing). Doing it now ensures we have a stable-enough structure.
    m_grid.shrinkToFit();

    LayoutStateMaintainer statePusher(*this, locationOffset());

    const Vector<int>& columnPos = table()->columnPositions();

    SubtreeLayoutScope layouter(this);
    for (unsigned r = 0; r < m_grid.size(); ++r) {
        Row& row = m_grid[r].row;
        unsigned cols = row.size();
        // First, propagate our table layout's information to the cells. This will mark the row as needing layout
        // if there was a column logical width change.
        for (unsigned startColumn = 0; startColumn < cols; ++startColumn) {
            CellStruct& current = row[startColumn];
            RenderTableCell* cell = current.primaryCell();
            if (!cell || current.inColSpan)
                continue;

            LayoutRectRecorder cellRecorder(*cell);

            unsigned endCol = startColumn;
            unsigned cspan = cell->colSpan();
            while (cspan && endCol < cols) {
                ASSERT(endCol < table()->columns().size());
                cspan -= table()->columns()[endCol].span;
                endCol++;
            }
            int tableLayoutLogicalWidth = columnPos[endCol] - columnPos[startColumn] - table()->hBorderSpacing();
            cell->setCellLogicalWidth(tableLayoutLogicalWidth, layouter);
        }

        if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) {
            if (!rowRenderer->needsLayout())
                rowRenderer->markForPaginationRelayoutIfNeeded(layouter);
            rowRenderer->layoutIfNeeded();
        }
    }

    clearNeedsLayout();
}

void RenderTableSection::distributeExtraLogicalHeightToPercentRows(int& extraLogicalHeight, int totalPercent)
{
    if (!totalPercent)
        return;

    unsigned totalRows = m_grid.size();
    int totalHeight = m_rowPos[totalRows] + extraLogicalHeight;
    int totalLogicalHeightAdded = 0;
    totalPercent = min(totalPercent, 100);
    int rowHeight = m_rowPos[1] - m_rowPos[0];
    for (unsigned r = 0; r < totalRows; ++r) {
        if (totalPercent > 0 && m_grid[r].logicalHeight.isPercent()) {
            int toAdd = min<int>(extraLogicalHeight, (totalHeight * m_grid[r].logicalHeight.percent() / 100) - rowHeight);
            // If toAdd is negative, then we don't want to shrink the row (this bug
            // affected Outlook Web Access).
            toAdd = max(0, toAdd);
            totalLogicalHeightAdded += toAdd;
            extraLogicalHeight -= toAdd;
            totalPercent -= m_grid[r].logicalHeight.percent();
        }
        ASSERT(totalRows >= 1);
        if (r < totalRows - 1)
            rowHeight = m_rowPos[r + 2] - m_rowPos[r + 1];
        m_rowPos[r + 1] += totalLogicalHeightAdded;
    }
}

void RenderTableSection::distributeExtraLogicalHeightToAutoRows(int& extraLogicalHeight, unsigned autoRowsCount)
{
    if (!autoRowsCount)
        return;

    int totalLogicalHeightAdded = 0;
    for (unsigned r = 0; r < m_grid.size(); ++r) {
        if (autoRowsCount > 0 && m_grid[r].logicalHeight.isAuto()) {
            // Recomputing |extraLogicalHeightForRow| guarantees that we properly ditribute round |extraLogicalHeight|.
            int extraLogicalHeightForRow = extraLogicalHeight / autoRowsCount;
            totalLogicalHeightAdded += extraLogicalHeightForRow;
            extraLogicalHeight -= extraLogicalHeightForRow;
            --autoRowsCount;
        }
        m_rowPos[r + 1] += totalLogicalHeightAdded;
    }
}

void RenderTableSection::distributeRemainingExtraLogicalHeight(int& extraLogicalHeight)
{
    unsigned totalRows = m_grid.size();

    if (extraLogicalHeight <= 0 || !m_rowPos[totalRows])
        return;

    // FIXME: m_rowPos[totalRows] - m_rowPos[0] is the total rows' size.
    int totalRowSize = m_rowPos[totalRows];
    int totalLogicalHeightAdded = 0;
    int previousRowPosition = m_rowPos[0];
    for (unsigned r = 0; r < totalRows; r++) {
        // weight with the original height
        totalLogicalHeightAdded += extraLogicalHeight * (m_rowPos[r + 1] - previousRowPosition) / totalRowSize;
        previousRowPosition = m_rowPos[r + 1];
        m_rowPos[r + 1] += totalLogicalHeightAdded;
    }

    extraLogicalHeight -= totalLogicalHeightAdded;
}

int RenderTableSection::distributeExtraLogicalHeightToRows(int extraLogicalHeight)
{
    if (!extraLogicalHeight)
        return extraLogicalHeight;

    unsigned totalRows = m_grid.size();
    if (!totalRows)
        return extraLogicalHeight;

    if (!m_rowPos[totalRows] && nextSibling())
        return extraLogicalHeight;

    unsigned autoRowsCount = 0;
    int totalPercent = 0;
    for (unsigned r = 0; r < totalRows; r++) {
        if (m_grid[r].logicalHeight.isAuto())
            ++autoRowsCount;
        else if (m_grid[r].logicalHeight.isPercent())
            totalPercent += m_grid[r].logicalHeight.percent();
    }

    int remainingExtraLogicalHeight = extraLogicalHeight;
    distributeExtraLogicalHeightToPercentRows(remainingExtraLogicalHeight, totalPercent);
    distributeExtraLogicalHeightToAutoRows(remainingExtraLogicalHeight, autoRowsCount);
    distributeRemainingExtraLogicalHeight(remainingExtraLogicalHeight);
    return extraLogicalHeight - remainingExtraLogicalHeight;
}

static bool shouldFlexCellChild(RenderObject* cellDescendant)
{
    return cellDescendant->isReplaced() || (cellDescendant->isBox() && toRenderBox(cellDescendant)->scrollsOverflow());
}

void RenderTableSection::layoutRows()
{
#ifndef NDEBUG
    SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif

    ASSERT(!needsLayout());

    // FIXME: Changing the height without a layout can change the overflow so it seems wrong.

    unsigned totalRows = m_grid.size();

    // Set the width of our section now.  The rows will also be this width.
    setLogicalWidth(table()->contentLogicalWidth());
    m_overflow.clear();
    m_overflowingCells.clear();
    m_forceSlowPaintPathWithOverflowingCell = false;

    int vspacing = table()->vBorderSpacing();
    unsigned nEffCols = table()->numEffCols();

    LayoutStateMaintainer statePusher(*this, locationOffset());

    for (unsigned r = 0; r < totalRows; r++) {
        // Set the row's x/y position and width/height.
        if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) {
            rowRenderer->setLocation(LayoutPoint(0, m_rowPos[r]));
            rowRenderer->setLogicalWidth(logicalWidth());
            rowRenderer->setLogicalHeight(m_rowPos[r + 1] - m_rowPos[r] - vspacing);
            rowRenderer->updateLayerTransform();
            rowRenderer->clearAllOverflows();
            rowRenderer->addVisualEffectOverflow();
        }

        int rowHeightIncreaseForPagination = 0;

        for (unsigned c = 0; c < nEffCols; c++) {
            CellStruct& cs = cellAt(r, c);
            RenderTableCell* cell = cs.primaryCell();

            if (!cell || cs.inColSpan)
                continue;

            LayoutRectRecorder cellRecorder(*cell);

            int rowIndex = cell->rowIndex();
            int rHeight = m_rowPos[rowIndex + cell->rowSpan()] - m_rowPos[rowIndex] - vspacing;

            // Force percent height children to lay themselves out again.
            // This will cause these children to grow to fill the cell.
            // FIXME: There is still more work to do here to fully match WinIE (should
            // it become necessary to do so).  In quirks mode, WinIE behaves like we
            // do, but it will clip the cells that spill out of the table section.  In
            // strict mode, Mozilla and WinIE both regrow the table to accommodate the
            // new height of the cell (thus letting the percentages cause growth one
            // time only).  We may also not be handling row-spanning cells correctly.
            //
            // Note also the oddity where replaced elements always flex, and yet blocks/tables do
            // not necessarily flex.  WinIE is crazy and inconsistent, and we can't hope to
            // match the behavior perfectly, but we'll continue to refine it as we discover new
            // bugs. :)
            bool cellChildrenFlex = false;
            bool flexAllChildren = cell->style()->logicalHeight().isFixed()
                || (!table()->style()->logicalHeight().isAuto() && rHeight != cell->logicalHeight());

            for (RenderObject* child = cell->firstChild(); child; child = child->nextSibling()) {
                if (!child->isText() && child->style()->logicalHeight().isPercent()
                    && (flexAllChildren || shouldFlexCellChild(child))
                    && (!child->isTable() || toRenderTable(child)->hasSections())) {
                    cellChildrenFlex = true;
                    break;
                }
            }

            if (!cellChildrenFlex) {
                if (TrackedRendererListHashSet* percentHeightDescendants = cell->percentHeightDescendants()) {
                    TrackedRendererListHashSet::iterator end = percentHeightDescendants->end();
                    for (TrackedRendererListHashSet::iterator it = percentHeightDescendants->begin(); it != end; ++it) {
                        if (flexAllChildren || shouldFlexCellChild(*it)) {
                            cellChildrenFlex = true;
                            break;
                        }
                    }
                }
            }

            if (cellChildrenFlex) {
                // Alignment within a cell is based off the calculated
                // height, which becomes irrelevant once the cell has
                // been resized based off its percentage.
                cell->setOverrideLogicalContentHeightFromRowHeight(rHeight);
                cell->forceChildLayout();

                // If the baseline moved, we may have to update the data for our row. Find out the new baseline.
                if (cell->isBaselineAligned()) {
                    LayoutUnit baseline = cell->cellBaselinePosition();
                    if (baseline > cell->borderBefore() + cell->paddingBefore())
                        m_grid[r].baseline = max(m_grid[r].baseline, baseline);
                }
            }

            SubtreeLayoutScope layouter(cell);
            cell->computeIntrinsicPadding(rHeight, layouter);

            LayoutRect oldCellRect = cell->frameRect();

            setLogicalPositionForCell(cell, c);

            if (!cell->needsLayout())
                cell->markForPaginationRelayoutIfNeeded(layouter);

            cell->layoutIfNeeded();

            // FIXME: Make pagination work with vertical tables.
            if (view()->layoutState()->pageLogicalHeight() && cell->logicalHeight() != rHeight) {
                // FIXME: Pagination might have made us change size. For now just shrink or grow the cell to fit without doing a relayout.
                // We'll also do a basic increase of the row height to accommodate the cell if it's bigger, but this isn't quite right
                // either. It's at least stable though and won't result in an infinite # of relayouts that may never stabilize.
                LayoutUnit oldLogicalHeight = cell->logicalHeight();
                if (oldLogicalHeight > rHeight)
                    rowHeightIncreaseForPagination = max<int>(rowHeightIncreaseForPagination, oldLogicalHeight - rHeight);
                cell->setLogicalHeight(rHeight);
                cell->computeOverflow(oldLogicalHeight, false);
            }

            LayoutSize childOffset(cell->location() - oldCellRect.location());
            if (childOffset.width() || childOffset.height()) {
                if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
                    view()->addLayoutDelta(childOffset);

                // If the child moved, we have to repaint it as well as any floating/positioned
                // descendants.  An exception is if we need a layout.  In this case, we know we're going to
                // repaint ourselves (and the child) anyway.
                if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout())
                    cell->repaintDuringLayoutIfMoved(oldCellRect);
            }
        }
        if (rowHeightIncreaseForPagination) {
            for (unsigned rowIndex = r + 1; rowIndex <= totalRows; rowIndex++)
                m_rowPos[rowIndex] += rowHeightIncreaseForPagination;
            for (unsigned c = 0; c < nEffCols; ++c) {
                Vector<RenderTableCell*, 1>& cells = cellAt(r, c).cells;
                for (size_t i = 0; i < cells.size(); ++i) {
                    LayoutUnit oldLogicalHeight = cells[i]->logicalHeight();
                    cells[i]->setLogicalHeight(oldLogicalHeight + rowHeightIncreaseForPagination);
                    cells[i]->computeOverflow(oldLogicalHeight, false);
                }
            }
        }
    }

    ASSERT(!needsLayout());

    setLogicalHeight(m_rowPos[totalRows]);

    computeOverflowFromCells(totalRows, nEffCols);
}

void RenderTableSection::computeOverflowFromCells()
{
    unsigned totalRows = m_grid.size();
    unsigned nEffCols = table()->numEffCols();
    computeOverflowFromCells(totalRows, nEffCols);
}

void RenderTableSection::computeOverflowFromCells(unsigned totalRows, unsigned nEffCols)
{
    unsigned totalCellsCount = nEffCols * totalRows;
    unsigned maxAllowedOverflowingCellsCount = totalCellsCount < gMinTableSizeToUseFastPaintPathWithOverflowingCell ? 0 : gMaxAllowedOverflowingCellRatioForFastPaintPath * totalCellsCount;

#ifndef NDEBUG
    bool hasOverflowingCell = false;
#endif
    // Now that our height has been determined, add in overflow from cells.
    for (unsigned r = 0; r < totalRows; r++) {
        for (unsigned c = 0; c < nEffCols; c++) {
            CellStruct& cs = cellAt(r, c);
            RenderTableCell* cell = cs.primaryCell();
            if (!cell || cs.inColSpan)
                continue;
            if (r < totalRows - 1 && cell == primaryCellAt(r + 1, c))
                continue;
            addOverflowFromChild(cell);
#ifndef NDEBUG
            hasOverflowingCell |= cell->hasVisualOverflow();
#endif
            if (cell->hasVisualOverflow() && !m_forceSlowPaintPathWithOverflowingCell) {
                m_overflowingCells.add(cell);
                if (m_overflowingCells.size() > maxAllowedOverflowingCellsCount) {
                    // We need to set m_forcesSlowPaintPath only if there is a least one overflowing cells as the hit testing code rely on this information.
                    m_forceSlowPaintPathWithOverflowingCell = true;
                    // The slow path does not make any use of the overflowing cells info, don't hold on to the memory.
                    m_overflowingCells.clear();
                }
            }
        }
    }

    ASSERT(hasOverflowingCell == this->hasOverflowingCell());
}

int RenderTableSection::calcBlockDirectionOuterBorder(BlockBorderSide side) const
{
    unsigned totalCols = table()->numEffCols();
    if (!m_grid.size() || !totalCols)
        return 0;

    unsigned borderWidth = 0;

    const BorderValue& sb = side == BorderBefore ? style()->borderBefore() : style()->borderAfter();
    if (sb.style() == BHIDDEN)
        return -1;
    if (sb.style() > BHIDDEN)
        borderWidth = sb.width();

    const BorderValue& rb = side == BorderBefore ? firstChild()->style()->borderBefore() : lastChild()->style()->borderAfter();
    if (rb.style() == BHIDDEN)
        return -1;
    if (rb.style() > BHIDDEN && rb.width() > borderWidth)
        borderWidth = rb.width();

    bool allHidden = true;
    for (unsigned c = 0; c < totalCols; c++) {
        const CellStruct& current = cellAt(side == BorderBefore ? 0 : m_grid.size() - 1, c);
        if (current.inColSpan || !current.hasCells())
            continue;
        const RenderStyle* primaryCellStyle = current.primaryCell()->style();
        const BorderValue& cb = side == BorderBefore ? primaryCellStyle->borderBefore() : primaryCellStyle->borderAfter(); // FIXME: Make this work with perpendicular and flipped cells.
        // FIXME: Don't repeat for the same col group
        RenderTableCol* colGroup = table()->colElement(c);
        if (colGroup) {
            const BorderValue& gb = side == BorderBefore ? colGroup->style()->borderBefore() : colGroup->style()->borderAfter();
            if (gb.style() == BHIDDEN || cb.style() == BHIDDEN)
                continue;
            allHidden = false;
            if (gb.style() > BHIDDEN && gb.width() > borderWidth)
                borderWidth = gb.width();
            if (cb.style() > BHIDDEN && cb.width() > borderWidth)
                borderWidth = cb.width();
        } else {
            if (cb.style() == BHIDDEN)
                continue;
            allHidden = false;
            if (cb.style() > BHIDDEN && cb.width() > borderWidth)
                borderWidth = cb.width();
        }
    }
    if (allHidden)
        return -1;

    if (side == BorderAfter)
        borderWidth++; // Distribute rounding error
    return borderWidth / 2;
}

int RenderTableSection::calcInlineDirectionOuterBorder(InlineBorderSide side) const
{
    unsigned totalCols = table()->numEffCols();
    if (!m_grid.size() || !totalCols)
        return 0;
    unsigned colIndex = side == BorderStart ? 0 : totalCols - 1;

    unsigned borderWidth = 0;

    const BorderValue& sb = side == BorderStart ? style()->borderStart() : style()->borderEnd();
    if (sb.style() == BHIDDEN)
        return -1;
    if (sb.style() > BHIDDEN)
        borderWidth = sb.width();

    if (RenderTableCol* colGroup = table()->colElement(colIndex)) {
        const BorderValue& gb = side == BorderStart ? colGroup->style()->borderStart() : colGroup->style()->borderEnd();
        if (gb.style() == BHIDDEN)
            return -1;
        if (gb.style() > BHIDDEN && gb.width() > borderWidth)
            borderWidth = gb.width();
    }

    bool allHidden = true;
    for (unsigned r = 0; r < m_grid.size(); r++) {
        const CellStruct& current = cellAt(r, colIndex);
        if (!current.hasCells())
            continue;
        // FIXME: Don't repeat for the same cell
        const RenderStyle* primaryCellStyle = current.primaryCell()->style();
        const RenderStyle* primaryCellParentStyle = current.primaryCell()->parent()->style();
        const BorderValue& cb = side == BorderStart ? primaryCellStyle->borderStart() : primaryCellStyle->borderEnd(); // FIXME: Make this work with perpendicular and flipped cells.
        const BorderValue& rb = side == BorderStart ? primaryCellParentStyle->borderStart() : primaryCellParentStyle->borderEnd();
        if (cb.style() == BHIDDEN || rb.style() == BHIDDEN)
            continue;
        allHidden = false;
        if (cb.style() > BHIDDEN && cb.width() > borderWidth)
            borderWidth = cb.width();
        if (rb.style() > BHIDDEN && rb.width() > borderWidth)
            borderWidth = rb.width();
    }
    if (allHidden)
        return -1;

    if ((side == BorderStart) != table()->style()->isLeftToRightDirection())
        borderWidth++; // Distribute rounding error
    return borderWidth / 2;
}

void RenderTableSection::recalcOuterBorder()
{
    m_outerBorderBefore = calcBlockDirectionOuterBorder(BorderBefore);
    m_outerBorderAfter = calcBlockDirectionOuterBorder(BorderAfter);
    m_outerBorderStart = calcInlineDirectionOuterBorder(BorderStart);
    m_outerBorderEnd = calcInlineDirectionOuterBorder(BorderEnd);
}

int RenderTableSection::firstLineBoxBaseline() const
{
    if (!m_grid.size())
        return -1;

    int firstLineBaseline = m_grid[0].baseline;
    if (firstLineBaseline)
        return firstLineBaseline + m_rowPos[0];

    firstLineBaseline = -1;
    const Row& firstRow = m_grid[0].row;
    for (size_t i = 0; i < firstRow.size(); ++i) {
        const CellStruct& cs = firstRow.at(i);
        const RenderTableCell* cell = cs.primaryCell();
        // Only cells with content have a baseline
        if (cell && cell->contentLogicalHeight())
            firstLineBaseline = max<int>(firstLineBaseline, cell->logicalTop() + cell->paddingBefore() + cell->borderBefore() + cell->contentLogicalHeight());
    }

    return firstLineBaseline;
}

void RenderTableSection::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    ANNOTATE_GRAPHICS_CONTEXT(paintInfo, this);

    ASSERT(!needsLayout());
    // avoid crashing on bugs that cause us to paint with dirty layout
    if (needsLayout())
        return;

    unsigned totalRows = m_grid.size();
    unsigned totalCols = table()->columns().size();

    if (!totalRows || !totalCols)
        return;

    LayoutPoint adjustedPaintOffset = paintOffset + location();

    PaintPhase phase = paintInfo.phase;
    bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset, ForceContentsClip);
    paintObject(paintInfo, adjustedPaintOffset);
    if (pushedClip)
        popContentsClip(paintInfo, phase, adjustedPaintOffset);

    if ((phase == PaintPhaseOutline || phase == PaintPhaseSelfOutline) && style()->visibility() == VISIBLE)
        paintOutline(paintInfo, LayoutRect(adjustedPaintOffset, size()));
}

static inline bool compareCellPositions(RenderTableCell* elem1, RenderTableCell* elem2)
{
    return elem1->rowIndex() < elem2->rowIndex();
}

// This comparison is used only when we have overflowing cells as we have an unsorted array to sort. We thus need
// to sort both on rows and columns to properly repaint.
static inline bool compareCellPositionsWithOverflowingCells(RenderTableCell* elem1, RenderTableCell* elem2)
{
    if (elem1->rowIndex() != elem2->rowIndex())
        return elem1->rowIndex() < elem2->rowIndex();

    return elem1->col() < elem2->col();
}

void RenderTableSection::paintCell(RenderTableCell* cell, PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
    PaintPhase paintPhase = paintInfo.phase;
    RenderTableRow* row = toRenderTableRow(cell->parent());

    if (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) {
        // We need to handle painting a stack of backgrounds.  This stack (from bottom to top) consists of
        // the column group, column, row group, row, and then the cell.
        RenderTableCol* column = table()->colElement(cell->col());
        RenderTableCol* columnGroup = column ? column->enclosingColumnGroup() : 0;

        // Column groups and columns first.
        // FIXME: Columns and column groups do not currently support opacity, and they are being painted "too late" in
        // the stack, since we have already opened a transparency layer (potentially) for the table row group.
        // Note that we deliberately ignore whether or not the cell has a layer, since these backgrounds paint "behind" the
        // cell.
        cell->paintBackgroundsBehindCell(paintInfo, cellPoint, columnGroup);
        cell->paintBackgroundsBehindCell(paintInfo, cellPoint, column);

        // Paint the row group next.
        cell->paintBackgroundsBehindCell(paintInfo, cellPoint, this);

        // Paint the row next, but only if it doesn't have a layer.  If a row has a layer, it will be responsible for
        // painting the row background for the cell.
        if (!row->hasSelfPaintingLayer())
            cell->paintBackgroundsBehindCell(paintInfo, cellPoint, row);
    }
    if ((!cell->hasSelfPaintingLayer() && !row->hasSelfPaintingLayer()))
        cell->paint(paintInfo, cellPoint);
}

LayoutRect RenderTableSection::logicalRectForWritingModeAndDirection(const LayoutRect& rect) const
{
    LayoutRect tableAlignedRect(rect);

    flipForWritingMode(tableAlignedRect);

    if (!style()->isHorizontalWritingMode())
        tableAlignedRect = tableAlignedRect.transposedRect();

    const Vector<int>& columnPos = table()->columnPositions();
    // FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
    if (!style()->isLeftToRightDirection())
        tableAlignedRect.setX(columnPos[columnPos.size() - 1] - tableAlignedRect.maxX());

    return tableAlignedRect;
}

CellSpan RenderTableSection::dirtiedRows(const LayoutRect& damageRect) const
{
    if (m_forceSlowPaintPathWithOverflowingCell)
        return fullTableRowSpan();

    CellSpan coveredRows = spannedRows(damageRect);

    // To repaint the border we might need to repaint first or last row even if they are not spanned themselves.
    if (coveredRows.start() >= m_rowPos.size() - 1 && m_rowPos[m_rowPos.size() - 1] + table()->outerBorderAfter() >= damageRect.y())
        --coveredRows.start();

    if (!coveredRows.end() && m_rowPos[0] - table()->outerBorderBefore() <= damageRect.maxY())
        ++coveredRows.end();

    return coveredRows;
}

CellSpan RenderTableSection::dirtiedColumns(const LayoutRect& damageRect) const
{
    if (m_forceSlowPaintPathWithOverflowingCell)
        return fullTableColumnSpan();

    CellSpan coveredColumns = spannedColumns(damageRect);

    const Vector<int>& columnPos = table()->columnPositions();
    // To repaint the border we might need to repaint first or last column even if they are not spanned themselves.
    if (coveredColumns.start() >= columnPos.size() - 1 && columnPos[columnPos.size() - 1] + table()->outerBorderEnd() >= damageRect.x())
        --coveredColumns.start();

    if (!coveredColumns.end() && columnPos[0] - table()->outerBorderStart() <= damageRect.maxX())
        ++coveredColumns.end();

    return coveredColumns;
}

CellSpan RenderTableSection::spannedRows(const LayoutRect& flippedRect) const
{
    // Find the first row that starts after rect top.
    unsigned nextRow = std::upper_bound(m_rowPos.begin(), m_rowPos.end(), flippedRect.y()) - m_rowPos.begin();

    if (nextRow == m_rowPos.size())
        return CellSpan(m_rowPos.size() - 1, m_rowPos.size() - 1); // After all rows.

    unsigned startRow = nextRow > 0 ? nextRow - 1 : 0;

    // Find the first row that starts after rect bottom.
    unsigned endRow;
    if (m_rowPos[nextRow] >= flippedRect.maxY())
        endRow = nextRow;
    else {
        endRow = std::upper_bound(m_rowPos.begin() + nextRow, m_rowPos.end(), flippedRect.maxY()) - m_rowPos.begin();
        if (endRow == m_rowPos.size())
            endRow = m_rowPos.size() - 1;
    }

    return CellSpan(startRow, endRow);
}

CellSpan RenderTableSection::spannedColumns(const LayoutRect& flippedRect) const
{
    const Vector<int>& columnPos = table()->columnPositions();

    // Find the first column that starts after rect left.
    // lower_bound doesn't handle the edge between two cells properly as it would wrongly return the
    // cell on the logical top/left.
    // upper_bound on the other hand properly returns the cell on the logical bottom/right, which also
    // matches the behavior of other browsers.
    unsigned nextColumn = std::upper_bound(columnPos.begin(), columnPos.end(), flippedRect.x()) - columnPos.begin();

    if (nextColumn == columnPos.size())
        return CellSpan(columnPos.size() - 1, columnPos.size() - 1); // After all columns.

    unsigned startColumn = nextColumn > 0 ? nextColumn - 1 : 0;

    // Find the first column that starts after rect right.
    unsigned endColumn;
    if (columnPos[nextColumn] >= flippedRect.maxX())
        endColumn = nextColumn;
    else {
        endColumn = std::upper_bound(columnPos.begin() + nextColumn, columnPos.end(), flippedRect.maxX()) - columnPos.begin();
        if (endColumn == columnPos.size())
            endColumn = columnPos.size() - 1;
    }

    return CellSpan(startColumn, endColumn);
}


void RenderTableSection::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    LayoutRect localRepaintRect = paintInfo.rect;
    localRepaintRect.moveBy(-paintOffset);

    LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(localRepaintRect);

    CellSpan dirtiedRows = this->dirtiedRows(tableAlignedRect);
    CellSpan dirtiedColumns = this->dirtiedColumns(tableAlignedRect);

    if (dirtiedColumns.start() < dirtiedColumns.end()) {
        if (!m_hasMultipleCellLevels && !m_overflowingCells.size()) {
            if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
                // Collapsed borders are painted from the bottom right to the top left so that precedence
                // due to cell position is respected.
                for (unsigned r = dirtiedRows.end(); r > dirtiedRows.start(); r--) {
                    unsigned row = r - 1;
                    for (unsigned c = dirtiedColumns.end(); c > dirtiedColumns.start(); c--) {
                        unsigned col = c - 1;
                        CellStruct& current = cellAt(row, col);
                        RenderTableCell* cell = current.primaryCell();
                        if (!cell || (row > dirtiedRows.start() && primaryCellAt(row - 1, col) == cell) || (col > dirtiedColumns.start() && primaryCellAt(row, col - 1) == cell))
                            continue;
                        LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
                        cell->paintCollapsedBorders(paintInfo, cellPoint);
                    }
                }
            } else {
                // Draw the dirty cells in the order that they appear.
                for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) {
                    RenderTableRow* row = m_grid[r].rowRenderer;
                    if (row && !row->hasSelfPaintingLayer())
                        row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
                    for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) {
                        CellStruct& current = cellAt(r, c);
                        RenderTableCell* cell = current.primaryCell();
                        if (!cell || (r > dirtiedRows.start() && primaryCellAt(r - 1, c) == cell) || (c > dirtiedColumns.start() && primaryCellAt(r, c - 1) == cell))
                            continue;
                        paintCell(cell, paintInfo, paintOffset);
                    }
                }
            }
        } else {
            // The overflowing cells should be scarce to avoid adding a lot of cells to the HashSet.
#ifndef NDEBUG
            unsigned totalRows = m_grid.size();
            unsigned totalCols = table()->columns().size();
            ASSERT(m_overflowingCells.size() < totalRows * totalCols * gMaxAllowedOverflowingCellRatioForFastPaintPath);
#endif

            // To make sure we properly repaint the section, we repaint all the overflowing cells that we collected.
            Vector<RenderTableCell*> cells;
            copyToVector(m_overflowingCells, cells);

            HashSet<RenderTableCell*> spanningCells;

            for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) {
                RenderTableRow* row = m_grid[r].rowRenderer;
                if (row && !row->hasSelfPaintingLayer())
                    row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
                for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) {
                    CellStruct& current = cellAt(r, c);
                    if (!current.hasCells())
                        continue;
                    for (unsigned i = 0; i < current.cells.size(); ++i) {
                        if (m_overflowingCells.contains(current.cells[i]))
                            continue;

                        if (current.cells[i]->rowSpan() > 1 || current.cells[i]->colSpan() > 1) {
                            if (!spanningCells.add(current.cells[i]).isNewEntry)
                                continue;
                        }

                        cells.append(current.cells[i]);
                    }
                }
            }

            // Sort the dirty cells by paint order.
            if (!m_overflowingCells.size())
                std::stable_sort(cells.begin(), cells.end(), compareCellPositions);
            else
                std::sort(cells.begin(), cells.end(), compareCellPositionsWithOverflowingCells);

            if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
                for (unsigned i = cells.size(); i > 0; --i) {
                    LayoutPoint cellPoint = flipForWritingModeForChild(cells[i - 1], paintOffset);
                    cells[i - 1]->paintCollapsedBorders(paintInfo, cellPoint);
                }
            } else {
                for (unsigned i = 0; i < cells.size(); ++i)
                    paintCell(cells[i], paintInfo, paintOffset);
            }
        }
    }
}

void RenderTableSection::imageChanged(WrappedImagePtr, const IntRect*)
{
    // FIXME: Examine cells and repaint only the rect the image paints in.
    repaint();
}

void RenderTableSection::recalcCells()
{
    ASSERT(m_needsCellRecalc);
    // We reset the flag here to ensure that |addCell| works. This is safe to do as
    // fillRowsWithDefaultStartingAtPosition makes sure we match the table's columns
    // representation.
    m_needsCellRecalc = false;

    m_cCol = 0;
    m_cRow = 0;
    m_grid.clear();

    for (RenderObject* row = firstChild(); row; row = row->nextSibling()) {
        if (row->isTableRow()) {
            unsigned insertionRow = m_cRow;
            m_cRow++;
            m_cCol = 0;
            ensureRows(m_cRow);

            RenderTableRow* tableRow = toRenderTableRow(row);
            m_grid[insertionRow].rowRenderer = tableRow;
            tableRow->setRowIndex(insertionRow);
            setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);

            for (RenderObject* cell = row->firstChild(); cell; cell = cell->nextSibling()) {
                if (!cell->isTableCell())
                    continue;

                RenderTableCell* tableCell = toRenderTableCell(cell);
                addCell(tableCell, tableRow);
            }
        }
    }

    m_grid.shrinkToFit();
    setNeedsLayout();
}

// FIXME: This function could be made O(1) in certain cases (like for the non-most-constrainive cells' case).
void RenderTableSection::rowLogicalHeightChanged(unsigned rowIndex)
{
    if (needsCellRecalc())
        return;

    setRowLogicalHeightToRowStyleLogicalHeight(m_grid[rowIndex]);

    for (RenderObject* cell = m_grid[rowIndex].rowRenderer->firstChild(); cell; cell = cell->nextSibling()) {
        if (!cell->isTableCell())
            continue;

        updateLogicalHeightForCell(m_grid[rowIndex], toRenderTableCell(cell));
    }
}

void RenderTableSection::setNeedsCellRecalc()
{
    m_needsCellRecalc = true;
    if (RenderTable* t = table())
        t->setNeedsSectionRecalc();
}

unsigned RenderTableSection::numColumns() const
{
    unsigned result = 0;

    for (unsigned r = 0; r < m_grid.size(); ++r) {
        for (unsigned c = result; c < table()->numEffCols(); ++c) {
            const CellStruct& cell = cellAt(r, c);
            if (cell.hasCells() || cell.inColSpan)
                result = c;
        }
    }

    return result + 1;
}

const BorderValue& RenderTableSection::borderAdjoiningStartCell(const RenderTableCell* cell) const
{
    ASSERT(cell->isFirstOrLastCellInRow());
    return hasSameDirectionAs(cell) ? style()->borderStart() : style()->borderEnd();
}

const BorderValue& RenderTableSection::borderAdjoiningEndCell(const RenderTableCell* cell) const
{
    ASSERT(cell->isFirstOrLastCellInRow());
    return hasSameDirectionAs(cell) ? style()->borderEnd() : style()->borderStart();
}

const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableStart() const
{
    unsigned adjoiningStartCellColumnIndex = hasSameDirectionAs(table()) ? 0 : table()->lastColumnIndex();
    return cellAt(0, adjoiningStartCellColumnIndex).primaryCell();
}

const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableEnd() const
{
    unsigned adjoiningEndCellColumnIndex = hasSameDirectionAs(table()) ? table()->lastColumnIndex() : 0;
    return cellAt(0, adjoiningEndCellColumnIndex).primaryCell();
}

void RenderTableSection::appendColumn(unsigned pos)
{
    ASSERT(!m_needsCellRecalc);

    for (unsigned row = 0; row < m_grid.size(); ++row)
        m_grid[row].row.resize(pos + 1);
}

void RenderTableSection::splitColumn(unsigned pos, unsigned first)
{
    ASSERT(!m_needsCellRecalc);

    if (m_cCol > pos)
        m_cCol++;
    for (unsigned row = 0; row < m_grid.size(); ++row) {
        Row& r = m_grid[row].row;
        r.insert(pos + 1, CellStruct());
        if (r[pos].hasCells()) {
            r[pos + 1].cells.appendVector(r[pos].cells);
            RenderTableCell* cell = r[pos].primaryCell();
            ASSERT(cell);
            ASSERT(cell->colSpan() >= (r[pos].inColSpan ? 1u : 0));
            unsigned colleft = cell->colSpan() - r[pos].inColSpan;
            if (first > colleft)
              r[pos + 1].inColSpan = 0;
            else
              r[pos + 1].inColSpan = first + r[pos].inColSpan;
        } else {
            r[pos + 1].inColSpan = 0;
        }
    }
}

// Hit Testing
bool RenderTableSection::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
    // If we have no children then we have nothing to do.
    if (!firstChild())
        return false;

    // Table sections cannot ever be hit tested.  Effectively they do not exist.
    // Just forward to our children always.
    LayoutPoint adjustedLocation = accumulatedOffset + location();

    if (hasOverflowClip() && !locationInContainer.intersects(overflowClipRect(adjustedLocation)))
        return false;

    if (hasOverflowingCell()) {
        for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
            // FIXME: We have to skip over inline flows, since they can show up inside table rows
            // at the moment (a demoted inline <form> for example). If we ever implement a
            // table-specific hit-test method (which we should do for performance reasons anyway),
            // then we can remove this check.
            if (child->isBox() && !toRenderBox(child)->hasSelfPaintingLayer()) {
                LayoutPoint childPoint = flipForWritingModeForChild(toRenderBox(child), adjustedLocation);
                if (child->nodeAtPoint(request, result, locationInContainer, childPoint, action)) {
                    updateHitTestResult(result, toLayoutPoint(locationInContainer.point() - childPoint));
                    return true;
                }
            }
        }
        return false;
    }

    recalcCellsIfNeeded();

    LayoutRect hitTestRect = locationInContainer.boundingBox();
    hitTestRect.moveBy(-adjustedLocation);

    LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(hitTestRect);
    CellSpan rowSpan = spannedRows(tableAlignedRect);
    CellSpan columnSpan = spannedColumns(tableAlignedRect);

    // Now iterate over the spanned rows and columns.
    for (unsigned hitRow = rowSpan.start(); hitRow < rowSpan.end(); ++hitRow) {
        for (unsigned hitColumn = columnSpan.start(); hitColumn < columnSpan.end(); ++hitColumn) {
            CellStruct& current = cellAt(hitRow, hitColumn);

            // If the cell is empty, there's nothing to do
            if (!current.hasCells())
                continue;

            for (unsigned i = current.cells.size() ; i; ) {
                --i;
                RenderTableCell* cell = current.cells[i];
                LayoutPoint cellPoint = flipForWritingModeForChild(cell, adjustedLocation);
                if (static_cast<RenderObject*>(cell)->nodeAtPoint(request, result, locationInContainer, cellPoint, action)) {
                    updateHitTestResult(result, locationInContainer.point() - toLayoutSize(cellPoint));
                    return true;
                }
            }
            if (!result.isRectBasedTest())
                break;
        }
        if (!result.isRectBasedTest())
            break;
    }

    return false;
}

void RenderTableSection::removeCachedCollapsedBorders(const RenderTableCell* cell)
{
    if (!table()->collapseBorders())
        return;

    for (int side = CBSBefore; side <= CBSEnd; ++side)
        m_cellsCollapsedBorders.remove(make_pair(cell, side));
}

void RenderTableSection::setCachedCollapsedBorder(const RenderTableCell* cell, CollapsedBorderSide side, CollapsedBorderValue border)
{
    ASSERT(table()->collapseBorders());
    m_cellsCollapsedBorders.set(make_pair(cell, side), border);
}

CollapsedBorderValue& RenderTableSection::cachedCollapsedBorder(const RenderTableCell* cell, CollapsedBorderSide side)
{
    ASSERT(table()->collapseBorders());
    HashMap<pair<const RenderTableCell*, int>, CollapsedBorderValue>::iterator it = m_cellsCollapsedBorders.find(make_pair(cell, side));
    ASSERT_WITH_SECURITY_IMPLICATION(it != m_cellsCollapsedBorders.end());
    return it->value;
}

RenderTableSection* RenderTableSection::createAnonymousWithParentRenderer(const RenderObject* parent)
{
    RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyleWithDisplay(parent->style(), TABLE_ROW_GROUP);
    RenderTableSection* newSection = new RenderTableSection(0);
    newSection->setDocumentForAnonymous(&parent->document());
    newSection->setStyle(newStyle.release());
    return newSection;
}

void RenderTableSection::setLogicalPositionForCell(RenderTableCell* cell, unsigned effectiveColumn) const
{
    LayoutPoint oldCellLocation = cell->location();

    LayoutPoint cellLocation(0, m_rowPos[cell->rowIndex()]);
    int horizontalBorderSpacing = table()->hBorderSpacing();

    // FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
    if (!style()->isLeftToRightDirection())
        cellLocation.setX(table()->columnPositions()[table()->numEffCols()] - table()->columnPositions()[table()->colToEffCol(cell->col() + cell->colSpan())] + horizontalBorderSpacing);
    else
        cellLocation.setX(table()->columnPositions()[effectiveColumn] + horizontalBorderSpacing);

    cell->setLogicalLocation(cellLocation);

    if (!RuntimeEnabledFeatures::repaintAfterLayoutEnabled())
        view()->addLayoutDelta(oldCellLocation - cell->location());
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */