// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file defines utility functions for working with strings. #ifndef BASE_STRINGS_STRING_UTIL_H_ #define BASE_STRINGS_STRING_UTIL_H_ #include <ctype.h> #include <stdarg.h> // va_list #include <string> #include <vector> #include "base/base_export.h" #include "base/basictypes.h" #include "base/compiler_specific.h" #include "base/strings/string16.h" #include "base/strings/string_piece.h" // For implicit conversions. namespace base { // C standard-library functions like "strncasecmp" and "snprintf" that aren't // cross-platform are provided as "base::strncasecmp", and their prototypes // are listed below. These functions are then implemented as inline calls // to the platform-specific equivalents in the platform-specific headers. // Compares the two strings s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strcasecmp(const char* s1, const char* s2); // Compares up to count characters of s1 and s2 without regard to case using // the current locale; returns 0 if they are equal, 1 if s1 > s2, and -1 if // s2 > s1 according to a lexicographic comparison. int strncasecmp(const char* s1, const char* s2, size_t count); // Same as strncmp but for char16 strings. int strncmp16(const char16* s1, const char16* s2, size_t count); // Wrapper for vsnprintf that always null-terminates and always returns the // number of characters that would be in an untruncated formatted // string, even when truncation occurs. int vsnprintf(char* buffer, size_t size, const char* format, va_list arguments) PRINTF_FORMAT(3, 0); // Some of these implementations need to be inlined. // We separate the declaration from the implementation of this inline // function just so the PRINTF_FORMAT works. inline int snprintf(char* buffer, size_t size, const char* format, ...) PRINTF_FORMAT(3, 4); inline int snprintf(char* buffer, size_t size, const char* format, ...) { va_list arguments; va_start(arguments, format); int result = vsnprintf(buffer, size, format, arguments); va_end(arguments); return result; } // BSD-style safe and consistent string copy functions. // Copies |src| to |dst|, where |dst_size| is the total allocated size of |dst|. // Copies at most |dst_size|-1 characters, and always NULL terminates |dst|, as // long as |dst_size| is not 0. Returns the length of |src| in characters. // If the return value is >= dst_size, then the output was truncated. // NOTE: All sizes are in number of characters, NOT in bytes. BASE_EXPORT size_t strlcpy(char* dst, const char* src, size_t dst_size); BASE_EXPORT size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size); // Scan a wprintf format string to determine whether it's portable across a // variety of systems. This function only checks that the conversion // specifiers used by the format string are supported and have the same meaning // on a variety of systems. It doesn't check for other errors that might occur // within a format string. // // Nonportable conversion specifiers for wprintf are: // - 's' and 'c' without an 'l' length modifier. %s and %c operate on char // data on all systems except Windows, which treat them as wchar_t data. // Use %ls and %lc for wchar_t data instead. // - 'S' and 'C', which operate on wchar_t data on all systems except Windows, // which treat them as char data. Use %ls and %lc for wchar_t data // instead. // - 'F', which is not identified by Windows wprintf documentation. // - 'D', 'O', and 'U', which are deprecated and not available on all systems. // Use %ld, %lo, and %lu instead. // // Note that there is no portable conversion specifier for char data when // working with wprintf. // // This function is intended to be called from base::vswprintf. BASE_EXPORT bool IsWprintfFormatPortable(const wchar_t* format); // ASCII-specific tolower. The standard library's tolower is locale sensitive, // so we don't want to use it here. template <class Char> inline Char ToLowerASCII(Char c) { return (c >= 'A' && c <= 'Z') ? (c + ('a' - 'A')) : c; } // ASCII-specific toupper. The standard library's toupper is locale sensitive, // so we don't want to use it here. template <class Char> inline Char ToUpperASCII(Char c) { return (c >= 'a' && c <= 'z') ? (c + ('A' - 'a')) : c; } // Function objects to aid in comparing/searching strings. template<typename Char> struct CaseInsensitiveCompare { public: bool operator()(Char x, Char y) const { // TODO(darin): Do we really want to do locale sensitive comparisons here? // See http://crbug.com/24917 return tolower(x) == tolower(y); } }; template<typename Char> struct CaseInsensitiveCompareASCII { public: bool operator()(Char x, Char y) const { return ToLowerASCII(x) == ToLowerASCII(y); } }; // These threadsafe functions return references to globally unique empty // strings. // // It is likely faster to construct a new empty string object (just a few // instructions to set the length to 0) than to get the empty string singleton // returned by these functions (which requires threadsafe singleton access). // // Therefore, DO NOT USE THESE AS A GENERAL-PURPOSE SUBSTITUTE FOR DEFAULT // CONSTRUCTORS. There is only one case where you should use these: functions // which need to return a string by reference (e.g. as a class member // accessor), and don't have an empty string to use (e.g. in an error case). // These should not be used as initializers, function arguments, or return // values for functions which return by value or outparam. BASE_EXPORT const std::string& EmptyString(); BASE_EXPORT const string16& EmptyString16(); // Contains the set of characters representing whitespace in the corresponding // encoding. Null-terminated. BASE_EXPORT extern const wchar_t kWhitespaceWide[]; BASE_EXPORT extern const char16 kWhitespaceUTF16[]; BASE_EXPORT extern const char kWhitespaceASCII[]; // Null-terminated string representing the UTF-8 byte order mark. BASE_EXPORT extern const char kUtf8ByteOrderMark[]; // Removes characters in |remove_chars| from anywhere in |input|. Returns true // if any characters were removed. |remove_chars| must be null-terminated. // NOTE: Safe to use the same variable for both |input| and |output|. BASE_EXPORT bool RemoveChars(const string16& input, const char16 remove_chars[], string16* output); BASE_EXPORT bool RemoveChars(const std::string& input, const char remove_chars[], std::string* output); // Replaces characters in |replace_chars| from anywhere in |input| with // |replace_with|. Each character in |replace_chars| will be replaced with // the |replace_with| string. Returns true if any characters were replaced. // |replace_chars| must be null-terminated. // NOTE: Safe to use the same variable for both |input| and |output|. BASE_EXPORT bool ReplaceChars(const string16& input, const char16 replace_chars[], const string16& replace_with, string16* output); BASE_EXPORT bool ReplaceChars(const std::string& input, const char replace_chars[], const std::string& replace_with, std::string* output); // Removes characters in |trim_chars| from the beginning and end of |input|. // |trim_chars| must be null-terminated. // NOTE: Safe to use the same variable for both |input| and |output|. BASE_EXPORT bool TrimString(const string16& input, const char16 trim_chars[], string16* output); BASE_EXPORT bool TrimString(const std::string& input, const char trim_chars[], std::string* output); // Truncates a string to the nearest UTF-8 character that will leave // the string less than or equal to the specified byte size. BASE_EXPORT void TruncateUTF8ToByteSize(const std::string& input, const size_t byte_size, std::string* output); // Trims any whitespace from either end of the input string. Returns where // whitespace was found. // The non-wide version has two functions: // * TrimWhitespaceASCII() // This function is for ASCII strings and only looks for ASCII whitespace; // Please choose the best one according to your usage. // NOTE: Safe to use the same variable for both input and output. enum TrimPositions { TRIM_NONE = 0, TRIM_LEADING = 1 << 0, TRIM_TRAILING = 1 << 1, TRIM_ALL = TRIM_LEADING | TRIM_TRAILING, }; BASE_EXPORT TrimPositions TrimWhitespace(const string16& input, TrimPositions positions, base::string16* output); BASE_EXPORT TrimPositions TrimWhitespaceASCII(const std::string& input, TrimPositions positions, std::string* output); // Deprecated. This function is only for backward compatibility and calls // TrimWhitespaceASCII(). BASE_EXPORT TrimPositions TrimWhitespace(const std::string& input, TrimPositions positions, std::string* output); // Searches for CR or LF characters. Removes all contiguous whitespace // strings that contain them. This is useful when trying to deal with text // copied from terminals. // Returns |text|, with the following three transformations: // (1) Leading and trailing whitespace is trimmed. // (2) If |trim_sequences_with_line_breaks| is true, any other whitespace // sequences containing a CR or LF are trimmed. // (3) All other whitespace sequences are converted to single spaces. BASE_EXPORT string16 CollapseWhitespace( const string16& text, bool trim_sequences_with_line_breaks); BASE_EXPORT std::string CollapseWhitespaceASCII( const std::string& text, bool trim_sequences_with_line_breaks); // Returns true if |input| is empty or contains only characters found in // |characters|. BASE_EXPORT bool ContainsOnlyChars(const StringPiece& input, const StringPiece& characters); BASE_EXPORT bool ContainsOnlyChars(const StringPiece16& input, const StringPiece16& characters); } // namespace base #if defined(OS_WIN) #include "base/strings/string_util_win.h" #elif defined(OS_POSIX) #include "base/strings/string_util_posix.h" #else #error Define string operations appropriately for your platform #endif // Returns true if the specified string matches the criteria. How can a wide // string be 8-bit or UTF8? It contains only characters that are < 256 (in the // first case) or characters that use only 8-bits and whose 8-bit // representation looks like a UTF-8 string (the second case). // // Note that IsStringUTF8 checks not only if the input is structurally // valid but also if it doesn't contain any non-character codepoint // (e.g. U+FFFE). It's done on purpose because all the existing callers want // to have the maximum 'discriminating' power from other encodings. If // there's a use case for just checking the structural validity, we have to // add a new function for that. BASE_EXPORT bool IsStringUTF8(const std::string& str); BASE_EXPORT bool IsStringASCII(const base::StringPiece& str); BASE_EXPORT bool IsStringASCII(const base::string16& str); // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template <class str> inline void StringToLowerASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = base::ToLowerASCII(*i); } template <class str> inline str StringToLowerASCII(const str& s) { // for std::string and std::wstring str output(s); StringToLowerASCII(&output); return output; } // Converts the elements of the given string. This version uses a pointer to // clearly differentiate it from the non-pointer variant. template <class str> inline void StringToUpperASCII(str* s) { for (typename str::iterator i = s->begin(); i != s->end(); ++i) *i = base::ToUpperASCII(*i); } template <class str> inline str StringToUpperASCII(const str& s) { // for std::string and std::wstring str output(s); StringToUpperASCII(&output); return output; } // Compare the lower-case form of the given string against the given ASCII // string. This is useful for doing checking if an input string matches some // token, and it is optimized to avoid intermediate string copies. This API is // borrowed from the equivalent APIs in Mozilla. BASE_EXPORT bool LowerCaseEqualsASCII(const std::string& a, const char* b); BASE_EXPORT bool LowerCaseEqualsASCII(const base::string16& a, const char* b); // Same thing, but with string iterators instead. BASE_EXPORT bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, std::string::const_iterator a_end, const char* b); BASE_EXPORT bool LowerCaseEqualsASCII(base::string16::const_iterator a_begin, base::string16::const_iterator a_end, const char* b); BASE_EXPORT bool LowerCaseEqualsASCII(const char* a_begin, const char* a_end, const char* b); BASE_EXPORT bool LowerCaseEqualsASCII(const base::char16* a_begin, const base::char16* a_end, const char* b); // Performs a case-sensitive string compare. The behavior is undefined if both // strings are not ASCII. BASE_EXPORT bool EqualsASCII(const base::string16& a, const base::StringPiece& b); // Returns true if str starts with search, or false otherwise. BASE_EXPORT bool StartsWithASCII(const std::string& str, const std::string& search, bool case_sensitive); BASE_EXPORT bool StartsWith(const base::string16& str, const base::string16& search, bool case_sensitive); // Returns true if str ends with search, or false otherwise. BASE_EXPORT bool EndsWith(const std::string& str, const std::string& search, bool case_sensitive); BASE_EXPORT bool EndsWith(const base::string16& str, const base::string16& search, bool case_sensitive); // Determines the type of ASCII character, independent of locale (the C // library versions will change based on locale). template <typename Char> inline bool IsAsciiWhitespace(Char c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; } template <typename Char> inline bool IsAsciiAlpha(Char c) { return ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z')); } template <typename Char> inline bool IsAsciiDigit(Char c) { return c >= '0' && c <= '9'; } template <typename Char> inline bool IsHexDigit(Char c) { return (c >= '0' && c <= '9') || (c >= 'A' && c <= 'F') || (c >= 'a' && c <= 'f'); } template <typename Char> inline Char HexDigitToInt(Char c) { DCHECK(IsHexDigit(c)); if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return 0; } // Returns true if it's a whitespace character. inline bool IsWhitespace(wchar_t c) { return wcschr(base::kWhitespaceWide, c) != NULL; } // Return a byte string in human-readable format with a unit suffix. Not // appropriate for use in any UI; use of FormatBytes and friends in ui/base is // highly recommended instead. TODO(avi): Figure out how to get callers to use // FormatBytes instead; remove this. BASE_EXPORT base::string16 FormatBytesUnlocalized(int64 bytes); // Starting at |start_offset| (usually 0), replace the first instance of // |find_this| with |replace_with|. BASE_EXPORT void ReplaceFirstSubstringAfterOffset( base::string16* str, base::string16::size_type start_offset, const base::string16& find_this, const base::string16& replace_with); BASE_EXPORT void ReplaceFirstSubstringAfterOffset( std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Starting at |start_offset| (usually 0), look through |str| and replace all // instances of |find_this| with |replace_with|. // // This does entire substrings; use std::replace in <algorithm> for single // characters, for example: // std::replace(str.begin(), str.end(), 'a', 'b'); BASE_EXPORT void ReplaceSubstringsAfterOffset( base::string16* str, base::string16::size_type start_offset, const base::string16& find_this, const base::string16& replace_with); BASE_EXPORT void ReplaceSubstringsAfterOffset( std::string* str, std::string::size_type start_offset, const std::string& find_this, const std::string& replace_with); // Reserves enough memory in |str| to accommodate |length_with_null| characters, // sets the size of |str| to |length_with_null - 1| characters, and returns a // pointer to the underlying contiguous array of characters. This is typically // used when calling a function that writes results into a character array, but // the caller wants the data to be managed by a string-like object. It is // convenient in that is can be used inline in the call, and fast in that it // avoids copying the results of the call from a char* into a string. // // |length_with_null| must be at least 2, since otherwise the underlying string // would have size 0, and trying to access &((*str)[0]) in that case can result // in a number of problems. // // Internally, this takes linear time because the resize() call 0-fills the // underlying array for potentially all // (|length_with_null - 1| * sizeof(string_type::value_type)) bytes. Ideally we // could avoid this aspect of the resize() call, as we expect the caller to // immediately write over this memory, but there is no other way to set the size // of the string, and not doing that will mean people who access |str| rather // than str.c_str() will get back a string of whatever size |str| had on entry // to this function (probably 0). template <class string_type> inline typename string_type::value_type* WriteInto(string_type* str, size_t length_with_null) { DCHECK_GT(length_with_null, 1u); str->reserve(length_with_null); str->resize(length_with_null - 1); return &((*str)[0]); } //----------------------------------------------------------------------------- // Splits a string into its fields delimited by any of the characters in // |delimiters|. Each field is added to the |tokens| vector. Returns the // number of tokens found. BASE_EXPORT size_t Tokenize(const base::string16& str, const base::string16& delimiters, std::vector<base::string16>* tokens); BASE_EXPORT size_t Tokenize(const std::string& str, const std::string& delimiters, std::vector<std::string>* tokens); BASE_EXPORT size_t Tokenize(const base::StringPiece& str, const base::StringPiece& delimiters, std::vector<base::StringPiece>* tokens); // Does the opposite of SplitString(). BASE_EXPORT base::string16 JoinString(const std::vector<base::string16>& parts, base::char16 s); BASE_EXPORT std::string JoinString( const std::vector<std::string>& parts, char s); // Join |parts| using |separator|. BASE_EXPORT std::string JoinString( const std::vector<std::string>& parts, const std::string& separator); BASE_EXPORT base::string16 JoinString( const std::vector<base::string16>& parts, const base::string16& separator); // Replace $1-$2-$3..$9 in the format string with |a|-|b|-|c|..|i| respectively. // Additionally, any number of consecutive '$' characters is replaced by that // number less one. Eg $$->$, $$$->$$, etc. The offsets parameter here can be // NULL. This only allows you to use up to nine replacements. BASE_EXPORT base::string16 ReplaceStringPlaceholders( const base::string16& format_string, const std::vector<base::string16>& subst, std::vector<size_t>* offsets); BASE_EXPORT std::string ReplaceStringPlaceholders( const base::StringPiece& format_string, const std::vector<std::string>& subst, std::vector<size_t>* offsets); // Single-string shortcut for ReplaceStringHolders. |offset| may be NULL. BASE_EXPORT base::string16 ReplaceStringPlaceholders( const base::string16& format_string, const base::string16& a, size_t* offset); // Returns true if the string passed in matches the pattern. The pattern // string can contain wildcards like * and ? // The backslash character (\) is an escape character for * and ? // We limit the patterns to having a max of 16 * or ? characters. // ? matches 0 or 1 character, while * matches 0 or more characters. BASE_EXPORT bool MatchPattern(const base::StringPiece& string, const base::StringPiece& pattern); BASE_EXPORT bool MatchPattern(const base::string16& string, const base::string16& pattern); // Hack to convert any char-like type to its unsigned counterpart. // For example, it will convert char, signed char and unsigned char to unsigned // char. template<typename T> struct ToUnsigned { typedef T Unsigned; }; template<> struct ToUnsigned<char> { typedef unsigned char Unsigned; }; template<> struct ToUnsigned<signed char> { typedef unsigned char Unsigned; }; template<> struct ToUnsigned<wchar_t> { #if defined(WCHAR_T_IS_UTF16) typedef unsigned short Unsigned; #elif defined(WCHAR_T_IS_UTF32) typedef uint32 Unsigned; #endif }; template<> struct ToUnsigned<short> { typedef unsigned short Unsigned; }; #endif // BASE_STRINGS_STRING_UTIL_H_