root/base/security_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. HideValueFromCompiler
  2. IsTcMallocBypassed
  3. CallocDiesOnOOM
  4. TEST
  5. TEST
  6. TEST
  7. TEST
  8. TEST
  9. TEST
  10. OverflowTestsSoftExpectTrue
  11. TEST
  12. CallocReturnsNull
  13. TEST
  14. ArePointersToSameArea
  15. TEST

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

#include <algorithm>
#include <limits>

#include "base/file_util.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_POSIX)
#include <sys/mman.h>
#include <unistd.h>
#endif

using std::nothrow;
using std::numeric_limits;

namespace {

// This function acts as a compiler optimization barrier. We use it to
// prevent the compiler from making an expression a compile-time constant.
// We also use it so that the compiler doesn't discard certain return values
// as something we don't need (see the comment with calloc below).
template <typename Type>
Type HideValueFromCompiler(volatile Type value) {
#if defined(__GNUC__)
  // In a GCC compatible compiler (GCC or Clang), make this compiler barrier
  // more robust than merely using "volatile".
  __asm__ volatile ("" : "+r" (value));
#endif  // __GNUC__
  return value;
}

// - NO_TCMALLOC (should be defined if compiled with use_allocator!="tcmalloc")
// - ADDRESS_SANITIZER and SYZYASAN because they have their own memory allocator
// - IOS does not use tcmalloc
// - OS_MACOSX does not use tcmalloc
#if !defined(NO_TCMALLOC) && !defined(ADDRESS_SANITIZER) && \
    !defined(OS_IOS) && !defined(OS_MACOSX) && !defined(SYZYASAN)
  #define TCMALLOC_TEST(function) function
#else
  #define TCMALLOC_TEST(function) DISABLED_##function
#endif

// TODO(jln): switch to std::numeric_limits<int>::max() when we switch to
// C++11.
const size_t kTooBigAllocSize = INT_MAX;

// Detect runtime TCMalloc bypasses.
bool IsTcMallocBypassed() {
#if defined(OS_LINUX) || defined(OS_CHROMEOS)
  // This should detect a TCMalloc bypass from Valgrind.
  char* g_slice = getenv("G_SLICE");
  if (g_slice && !strcmp(g_slice, "always-malloc"))
    return true;
#elif defined(OS_WIN)
  // This should detect a TCMalloc bypass from setting
  // the CHROME_ALLOCATOR environment variable.
  char* allocator = getenv("CHROME_ALLOCATOR");
  if (allocator && strcmp(allocator, "tcmalloc"))
    return true;
#endif
  return false;
}

bool CallocDiesOnOOM() {
// The sanitizers' calloc dies on OOM instead of returning NULL.
// The wrapper function in base/process_util_linux.cc that is used when we
// compile without TCMalloc will just die on OOM instead of returning NULL.
#if !defined(OS_WIN) && (defined(ADDRESS_SANITIZER) || \
    defined(MEMORY_SANITIZER) || defined(THREAD_SANITIZER) || \
    (defined(OS_LINUX) && defined(NO_TCMALLOC)))
  return true;
#else
  return false;
#endif
}

// Fake test that allow to know the state of TCMalloc by looking at bots.
TEST(SecurityTest, TCMALLOC_TEST(IsTCMallocDynamicallyBypassed)) {
  printf("Malloc is dynamically bypassed: %s\n",
         IsTcMallocBypassed() ? "yes." : "no.");
}

// The MemoryAllocationRestrictions* tests test that we can not allocate a
// memory range that cannot be indexed via an int. This is used to mitigate
// vulnerabilities in libraries that use int instead of size_t.  See
// crbug.com/169327.

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsMalloc)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(malloc(kTooBigAllocSize))));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsCalloc)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(calloc(kTooBigAllocSize, 1))));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsRealloc)) {
  if (!IsTcMallocBypassed()) {
    char* orig_ptr = static_cast<char*>(malloc(1));
    ASSERT_TRUE(orig_ptr);
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(realloc(orig_ptr, kTooBigAllocSize))));
    ASSERT_TRUE(!ptr);
    // If realloc() did not succeed, we need to free orig_ptr.
    free(orig_ptr);
  }
}

typedef struct {
  char large_array[kTooBigAllocSize];
} VeryLargeStruct;

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNew)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<VeryLargeStruct> ptr(
        HideValueFromCompiler(new (nothrow) VeryLargeStruct));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNewArray)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char[]> ptr(
        HideValueFromCompiler(new (nothrow) char[kTooBigAllocSize]));
    ASSERT_TRUE(!ptr);
  }
}

// The tests bellow check for overflows in new[] and calloc().

#if defined(OS_IOS) || defined(OS_WIN) || defined(THREAD_SANITIZER)
  #define DISABLE_ON_IOS_AND_WIN_AND_TSAN(function) DISABLED_##function
#else
  #define DISABLE_ON_IOS_AND_WIN_AND_TSAN(function) function
#endif

// There are platforms where these tests are known to fail. We would like to
// be able to easily check the status on the bots, but marking tests as
// FAILS_ is too clunky.
void OverflowTestsSoftExpectTrue(bool overflow_detected) {
  if (!overflow_detected) {
#if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_MACOSX)
    // Sadly, on Linux, Android, and OSX we don't have a good story yet. Don't
    // fail the test, but report.
    printf("Platform has overflow: %s\n",
           !overflow_detected ? "yes." : "no.");
#else
    // Otherwise, fail the test. (Note: EXPECT are ok in subfunctions, ASSERT
    // aren't).
    EXPECT_TRUE(overflow_detected);
#endif
  }
}

// Test array[TooBig][X] and array[X][TooBig] allocations for int overflows.
// IOS doesn't honor nothrow, so disable the test there.
// Crashes on Windows Dbg builds, disable there as well.
TEST(SecurityTest, DISABLE_ON_IOS_AND_WIN_AND_TSAN(NewOverflow)) {
  const size_t kArraySize = 4096;
  // We want something "dynamic" here, so that the compiler doesn't
  // immediately reject crazy arrays.
  const size_t kDynamicArraySize = HideValueFromCompiler(kArraySize);
  // numeric_limits are still not constexpr until we switch to C++11, so we
  // use an ugly cast.
  const size_t kMaxSizeT = ~static_cast<size_t>(0);
  ASSERT_EQ(numeric_limits<size_t>::max(), kMaxSizeT);
  const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
  const size_t kDynamicArraySize2 = HideValueFromCompiler(kArraySize2);
  {
    scoped_ptr<char[][kArraySize]> array_pointer(new (nothrow)
        char[kDynamicArraySize2][kArraySize]);
    OverflowTestsSoftExpectTrue(!array_pointer);
  }
  // On windows, the compiler prevents static array sizes of more than
  // 0x7fffffff (error C2148).
#if !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
  {
    scoped_ptr<char[][kArraySize2]> array_pointer(new (nothrow)
        char[kDynamicArraySize][kArraySize2]);
    OverflowTestsSoftExpectTrue(!array_pointer);
  }
#endif  // !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
}

// Call calloc(), eventually free the memory and return whether or not
// calloc() did succeed.
bool CallocReturnsNull(size_t nmemb, size_t size) {
  scoped_ptr<char, base::FreeDeleter> array_pointer(
      static_cast<char*>(calloc(nmemb, size)));
  // We need the call to HideValueFromCompiler(): we have seen LLVM
  // optimize away the call to calloc() entirely and assume
  // the pointer to not be NULL.
  return HideValueFromCompiler(array_pointer.get()) == NULL;
}

// Test if calloc() can overflow.
TEST(SecurityTest, CallocOverflow) {
  const size_t kArraySize = 4096;
  const size_t kMaxSizeT = numeric_limits<size_t>::max();
  const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
  if (!CallocDiesOnOOM()) {
    EXPECT_TRUE(CallocReturnsNull(kArraySize, kArraySize2));
    EXPECT_TRUE(CallocReturnsNull(kArraySize2, kArraySize));
  } else {
    // It's also ok for calloc to just terminate the process.
#if defined(GTEST_HAS_DEATH_TEST)
    EXPECT_DEATH(CallocReturnsNull(kArraySize, kArraySize2), "");
    EXPECT_DEATH(CallocReturnsNull(kArraySize2, kArraySize), "");
#endif  // GTEST_HAS_DEATH_TEST
  }
}

#if (defined(OS_LINUX) || defined(OS_CHROMEOS)) && defined(__x86_64__)
// Check if ptr1 and ptr2 are separated by less than size chars.
bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) {
  ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) -
                       reinterpret_cast<char*>(std::min(ptr1, ptr2));
  return static_cast<size_t>(ptr_diff) <= size;
}

// Check if TCMalloc uses an underlying random memory allocator.
TEST(SecurityTest, TCMALLOC_TEST(RandomMemoryAllocations)) {
  if (IsTcMallocBypassed())
    return;
  size_t kPageSize = 4096;  // We support x86_64 only.
  // Check that malloc() returns an address that is neither the kernel's
  // un-hinted mmap area, nor the current brk() area. The first malloc() may
  // not be at a random address because TCMalloc will first exhaust any memory
  // that it has allocated early on, before starting the sophisticated
  // allocators.
  void* default_mmap_heap_address =
      mmap(0, kPageSize, PROT_READ|PROT_WRITE,
           MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  ASSERT_NE(default_mmap_heap_address,
            static_cast<void*>(MAP_FAILED));
  ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0);
  void* brk_heap_address = sbrk(0);
  ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1));
  ASSERT_TRUE(brk_heap_address != NULL);
  // 1 MB should get us past what TCMalloc pre-allocated before initializing
  // the sophisticated allocators.
  size_t kAllocSize = 1<<20;
  scoped_ptr<char, base::FreeDeleter> ptr(
      static_cast<char*>(malloc(kAllocSize)));
  ASSERT_TRUE(ptr != NULL);
  // If two pointers are separated by less than 512MB, they are considered
  // to be in the same area.
  // Our random pointer could be anywhere within 0x3fffffffffff (46bits),
  // and we are checking that it's not withing 1GB (30 bits) from two
  // addresses (brk and mmap heap). We have roughly one chance out of
  // 2^15 to flake.
  const size_t kAreaRadius = 1<<29;
  bool in_default_mmap_heap = ArePointersToSameArea(
      ptr.get(), default_mmap_heap_address, kAreaRadius);
  EXPECT_FALSE(in_default_mmap_heap);

  bool in_default_brk_heap = ArePointersToSameArea(
      ptr.get(), brk_heap_address, kAreaRadius);
  EXPECT_FALSE(in_default_brk_heap);

  // In the implementation, we always mask our random addresses with
  // kRandomMask, so we use it as an additional detection mechanism.
  const uintptr_t kRandomMask = 0x3fffffffffffULL;
  bool impossible_random_address =
      reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask;
  EXPECT_FALSE(impossible_random_address);
}

#endif  // (defined(OS_LINUX) || defined(OS_CHROMEOS)) && defined(__x86_64__)

}  // namespace

/* [<][>][^][v][top][bottom][index][help] */