root/mojo/system/local_data_pipe.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. current_num_bytes_
  2. ProducerCloseImplNoLock
  3. ProducerWriteDataImplNoLock
  4. ProducerBeginWriteDataImplNoLock
  5. ProducerEndWriteDataImplNoLock
  6. ProducerSatisfiedFlagsNoLock
  7. ProducerSatisfiableFlagsNoLock
  8. ConsumerCloseImplNoLock
  9. ConsumerReadDataImplNoLock
  10. ConsumerDiscardDataImplNoLock
  11. ConsumerQueryDataImplNoLock
  12. ConsumerBeginReadDataImplNoLock
  13. ConsumerEndReadDataImplNoLock
  14. ConsumerSatisfiedFlagsNoLock
  15. ConsumerSatisfiableFlagsNoLock
  16. EnsureBufferNoLock
  17. DestroyBufferNoLock
  18. GetMaxNumBytesToWriteNoLock
  19. GetMaxNumBytesToReadNoLock
  20. MarkDataAsConsumedNoLock

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// TODO(vtl): I currently potentially overflow in doing index calculations.
// E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but
// their sum may not. This is bad and poses a security risk. (We're currently
// saved by the limit on capacity -- the maximum size of the buffer, checked in
// |DataPipe::ValidateOptions()|, is currently sufficiently small.

#include "mojo/system/local_data_pipe.h"

#include <string.h>

#include <algorithm>

#include "base/logging.h"
#include "mojo/system/constants.h"

namespace mojo {
namespace system {

LocalDataPipe::LocalDataPipe(const MojoCreateDataPipeOptions& options)
    : DataPipe(true, true, options),
      start_index_(0),
      current_num_bytes_(0) {
  // Note: |buffer_| is lazily allocated, since a common case will be that one
  // of the handles is immediately passed off to another process.
}

LocalDataPipe::~LocalDataPipe() {
}

void LocalDataPipe::ProducerCloseImplNoLock() {
  // If the consumer is still open and we still have data, we have to keep the
  // buffer around. Currently, we won't free it even if it empties later. (We
  // could do this -- requiring a check on every read -- but that seems to be
  // optimizing for the uncommon case.)
  if (!consumer_open_no_lock() || !current_num_bytes_) {
    // Note: There can only be a two-phase *read* (by the consumer) if we still
    // have data.
    DCHECK(!consumer_in_two_phase_read_no_lock());
    DestroyBufferNoLock();
  }
}

MojoResult LocalDataPipe::ProducerWriteDataImplNoLock(const void* elements,
                                                      uint32_t* num_bytes,
                                                      bool all_or_none) {
  DCHECK_EQ(*num_bytes % element_num_bytes(), 0u);
  DCHECK_GT(*num_bytes, 0u);
  DCHECK(consumer_open_no_lock());

  size_t num_bytes_to_write = 0;
  if (may_discard()) {
    if (all_or_none && *num_bytes > capacity_num_bytes())
      return MOJO_RESULT_OUT_OF_RANGE;

    num_bytes_to_write = std::min(static_cast<size_t>(*num_bytes),
                                  capacity_num_bytes());
    if (num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) {
      // Discard as much as needed (discard oldest first).
      MarkDataAsConsumedNoLock(
          num_bytes_to_write - (capacity_num_bytes() - current_num_bytes_));
      // No need to wake up write waiters, since we're definitely going to leave
      // the buffer full.
    }
  } else {
    if (all_or_none && *num_bytes > capacity_num_bytes() - current_num_bytes_) {
      // Don't return "should wait" since you can't wait for a specified amount
      // of data.
      return MOJO_RESULT_OUT_OF_RANGE;
    }

    num_bytes_to_write = std::min(static_cast<size_t>(*num_bytes),
                                  capacity_num_bytes() - current_num_bytes_);
  }
  if (num_bytes_to_write == 0)
    return MOJO_RESULT_SHOULD_WAIT;

  // The amount we can write in our first |memcpy()|.
  size_t num_bytes_to_write_first =
      std::min(num_bytes_to_write, GetMaxNumBytesToWriteNoLock());
  // Do the first (and possibly only) |memcpy()|.
  size_t first_write_index =
      (start_index_ + current_num_bytes_) % capacity_num_bytes();
  EnsureBufferNoLock();
  memcpy(buffer_.get() + first_write_index, elements, num_bytes_to_write_first);

  if (num_bytes_to_write_first < num_bytes_to_write) {
    // The "second write index" is zero.
    memcpy(buffer_.get(),
           static_cast<const char*>(elements) + num_bytes_to_write_first,
           num_bytes_to_write - num_bytes_to_write_first);
  }

  current_num_bytes_ += num_bytes_to_write;
  DCHECK_LE(current_num_bytes_, capacity_num_bytes());
  *num_bytes = static_cast<uint32_t>(num_bytes_to_write);
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ProducerBeginWriteDataImplNoLock(
    void** buffer,
    uint32_t* buffer_num_bytes,
    bool all_or_none) {
  DCHECK(consumer_open_no_lock());

  // The index we need to start writing at.
  size_t write_index =
      (start_index_ + current_num_bytes_) % capacity_num_bytes();

  size_t max_num_bytes_to_write = GetMaxNumBytesToWriteNoLock();
  if (all_or_none && *buffer_num_bytes > max_num_bytes_to_write) {
    // In "may discard" mode, we can always write from the write index to the
    // end of the buffer.
    if (may_discard() &&
        *buffer_num_bytes <= capacity_num_bytes() - write_index) {
      // To do so, we need to discard an appropriate amount of data.
      // We should only reach here if the start index is after the write index!
      DCHECK_GE(start_index_, write_index);
      DCHECK_GT(*buffer_num_bytes - max_num_bytes_to_write, 0u);
      MarkDataAsConsumedNoLock(*buffer_num_bytes - max_num_bytes_to_write);
      max_num_bytes_to_write = *buffer_num_bytes;
    } else {
      // Don't return "should wait" since you can't wait for a specified amount
      // of data.
      return MOJO_RESULT_OUT_OF_RANGE;
    }
  }

  // Don't go into a two-phase write if there's no room.
  if (max_num_bytes_to_write == 0)
    return MOJO_RESULT_SHOULD_WAIT;

  EnsureBufferNoLock();
  *buffer = buffer_.get() + write_index;
  *buffer_num_bytes = static_cast<uint32_t>(max_num_bytes_to_write);
  set_producer_two_phase_max_num_bytes_written_no_lock(
      static_cast<uint32_t>(max_num_bytes_to_write));
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ProducerEndWriteDataImplNoLock(
    uint32_t num_bytes_written) {
  DCHECK_LE(num_bytes_written,
            producer_two_phase_max_num_bytes_written_no_lock());
  current_num_bytes_ += num_bytes_written;
  DCHECK_LE(current_num_bytes_, capacity_num_bytes());
  set_producer_two_phase_max_num_bytes_written_no_lock(0);
  return MOJO_RESULT_OK;
}

MojoWaitFlags LocalDataPipe::ProducerSatisfiedFlagsNoLock() {
  MojoWaitFlags rv = MOJO_WAIT_FLAG_NONE;
  if (consumer_open_no_lock() &&
      (may_discard() || current_num_bytes_ < capacity_num_bytes()) &&
      !producer_in_two_phase_write_no_lock())
    rv |= MOJO_WAIT_FLAG_WRITABLE;
  return rv;
}

MojoWaitFlags LocalDataPipe::ProducerSatisfiableFlagsNoLock() {
  MojoWaitFlags rv = MOJO_WAIT_FLAG_NONE;
  if (consumer_open_no_lock())
    rv |= MOJO_WAIT_FLAG_WRITABLE;
  return rv;
}

void LocalDataPipe::ConsumerCloseImplNoLock() {
  // If the producer is around and in a two-phase write, we have to keep the
  // buffer around. (We then don't free it until the producer is closed. This
  // could be rectified, but again seems like optimizing for the uncommon case.)
  if (!producer_open_no_lock() || !producer_in_two_phase_write_no_lock())
    DestroyBufferNoLock();
  current_num_bytes_ = 0;
}

MojoResult LocalDataPipe::ConsumerReadDataImplNoLock(void* elements,
                                                     uint32_t* num_bytes,
                                                     bool all_or_none) {
  DCHECK_EQ(*num_bytes % element_num_bytes(), 0u);
  DCHECK_GT(*num_bytes, 0u);

  if (all_or_none && *num_bytes > current_num_bytes_) {
    // Don't return "should wait" since you can't wait for a specified amount of
    // data.
    return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  size_t num_bytes_to_read =
      std::min(static_cast<size_t>(*num_bytes), current_num_bytes_);
  if (num_bytes_to_read == 0) {
    return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  // The amount we can read in our first |memcpy()|.
  size_t num_bytes_to_read_first =
      std::min(num_bytes_to_read, GetMaxNumBytesToReadNoLock());
  memcpy(elements, buffer_.get() + start_index_, num_bytes_to_read_first);

  if (num_bytes_to_read_first < num_bytes_to_read) {
    // The "second read index" is zero.
    memcpy(static_cast<char*>(elements) + num_bytes_to_read_first,
           buffer_.get(),
           num_bytes_to_read - num_bytes_to_read_first);
  }

  MarkDataAsConsumedNoLock(num_bytes_to_read);
  *num_bytes = static_cast<uint32_t>(num_bytes_to_read);
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ConsumerDiscardDataImplNoLock(uint32_t* num_bytes,
                                                        bool all_or_none) {
  DCHECK_EQ(*num_bytes % element_num_bytes(), 0u);
  DCHECK_GT(*num_bytes, 0u);

  if (all_or_none && *num_bytes > current_num_bytes_) {
    // Don't return "should wait" since you can't wait for a specified amount of
    // data.
    return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  // Be consistent with other operations; error if no data available.
  if (current_num_bytes_ == 0) {
    return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  size_t num_bytes_to_discard =
      std::min(static_cast<size_t>(*num_bytes), current_num_bytes_);
  MarkDataAsConsumedNoLock(num_bytes_to_discard);
  *num_bytes = static_cast<uint32_t>(num_bytes_to_discard);
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ConsumerQueryDataImplNoLock(uint32_t* num_bytes) {
  // Note: This cast is safe, since the capacity fits into a |uint32_t|.
  *num_bytes = static_cast<uint32_t>(current_num_bytes_);
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ConsumerBeginReadDataImplNoLock(
    const void** buffer,
    uint32_t* buffer_num_bytes,
    bool all_or_none) {
  size_t max_num_bytes_to_read = GetMaxNumBytesToReadNoLock();
  if (all_or_none && *buffer_num_bytes > max_num_bytes_to_read) {
    // Don't return "should wait" since you can't wait for a specified amount of
    // data.
    return producer_open_no_lock() ? MOJO_RESULT_OUT_OF_RANGE :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  // Don't go into a two-phase read if there's no data.
  if (max_num_bytes_to_read == 0) {
    return producer_open_no_lock() ? MOJO_RESULT_SHOULD_WAIT :
                                     MOJO_RESULT_FAILED_PRECONDITION;
  }

  *buffer = buffer_.get() + start_index_;
  *buffer_num_bytes = static_cast<uint32_t>(max_num_bytes_to_read);
  set_consumer_two_phase_max_num_bytes_read_no_lock(
      static_cast<uint32_t>(max_num_bytes_to_read));
  return MOJO_RESULT_OK;
}

MojoResult LocalDataPipe::ConsumerEndReadDataImplNoLock(
    uint32_t num_bytes_read) {
  DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read_no_lock());
  DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes());
  MarkDataAsConsumedNoLock(num_bytes_read);
  set_consumer_two_phase_max_num_bytes_read_no_lock(0);
  return MOJO_RESULT_OK;
}

MojoWaitFlags LocalDataPipe::ConsumerSatisfiedFlagsNoLock() {
  MojoWaitFlags rv = MOJO_WAIT_FLAG_NONE;
  if (current_num_bytes_ > 0 && !consumer_in_two_phase_read_no_lock())
    rv |= MOJO_WAIT_FLAG_READABLE;
  return rv;
}

MojoWaitFlags LocalDataPipe::ConsumerSatisfiableFlagsNoLock() {
  MojoWaitFlags rv = MOJO_WAIT_FLAG_NONE;
  if (current_num_bytes_ > 0 || producer_open_no_lock())
    rv |= MOJO_WAIT_FLAG_READABLE;
  return rv;
}

void LocalDataPipe::EnsureBufferNoLock() {
  DCHECK(producer_open_no_lock());
  if (buffer_.get())
    return;
  buffer_.reset(static_cast<char*>(
      base::AlignedAlloc(capacity_num_bytes(), kDataPipeBufferAlignmentBytes)));
}

void LocalDataPipe::DestroyBufferNoLock() {
#ifndef NDEBUG
  // Scribble on the buffer to help detect use-after-frees. (This also helps the
  // unit test detect certain bugs without needing ASAN or similar.)
  if (buffer_.get())
    memset(buffer_.get(), 0xcd, capacity_num_bytes());
#endif
  buffer_.reset();
}

size_t LocalDataPipe::GetMaxNumBytesToWriteNoLock() {
  size_t next_index = start_index_ + current_num_bytes_;
  if (next_index >= capacity_num_bytes()) {
    next_index %= capacity_num_bytes();
    DCHECK_GE(start_index_, next_index);
    DCHECK_EQ(start_index_ - next_index,
              capacity_num_bytes() - current_num_bytes_);
    return start_index_ - next_index;
  }
  return capacity_num_bytes() - next_index;
}

size_t LocalDataPipe::GetMaxNumBytesToReadNoLock() {
  if (start_index_ + current_num_bytes_ > capacity_num_bytes())
    return capacity_num_bytes() - start_index_;
  return current_num_bytes_;
}

void LocalDataPipe::MarkDataAsConsumedNoLock(size_t num_bytes) {
  DCHECK_LE(num_bytes, current_num_bytes_);
  start_index_ += num_bytes;
  start_index_ %= capacity_num_bytes();
  current_num_bytes_ -= num_bytes;
}

}  // namespace system
}  // namespace mojo

/* [<][>][^][v][top][bottom][index][help] */