root/components/storage_monitor/storage_monitor_linux_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. GetDeviceInfo
  2. GetDevicePartitionSize
  3. GetDeviceId
  4. UpdateMtab
  5. SetUp
  6. TearDown
  7. AppendToMtabAndRunLoop
  8. OverwriteMtabAndRunLoop
  9. WriteEmptyMtabAndRunLoop
  10. CreateMountPointWithDCIMDir
  11. CreateMountPointWithoutDCIMDir
  12. RemoveDCIMDirFromMountPoint
  13. observer
  14. notifier
  15. GetStorageSize
  16. CreateMountPoint
  17. WriteToMtab
  18. TEST_F
  19. TEST_F
  20. TEST_F
  21. TEST_F
  22. TEST_F
  23. TEST_F
  24. TEST_F

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// StorageMonitorLinux unit tests.

#include "components/storage_monitor/storage_monitor_linux.h"

#include <mntent.h>
#include <stdio.h>

#include <string>

#include "base/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/run_loop.h"
#include "base/strings/utf_string_conversions.h"
#include "components/storage_monitor/mock_removable_storage_observer.h"
#include "components/storage_monitor/removable_device_constants.h"
#include "components/storage_monitor/storage_info.h"
#include "components/storage_monitor/storage_monitor.h"
#include "components/storage_monitor/test_media_transfer_protocol_manager_linux.h"
#include "components/storage_monitor/test_storage_monitor.h"
#include "content/public/test/test_browser_thread_bundle.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace storage_monitor {

namespace {

const char kValidFS[] = "vfat";
const char kInvalidFS[] = "invalidfs";

const char kInvalidPath[] = "invalid path does not exist";

const char kDeviceDCIM1[] = "d1";
const char kDeviceDCIM2[] = "d2";
const char kDeviceDCIM3[] = "d3";
const char kDeviceNoDCIM[] = "d4";
const char kDeviceFixed[] = "d5";

const char kInvalidDevice[] = "invalid_device";

const char kMountPointA[] = "mnt_a";
const char kMountPointB[] = "mnt_b";
const char kMountPointC[] = "mnt_c";

struct TestDeviceData {
  const char* device_path;
  const char* unique_id;
  StorageInfo::Type type;
  uint64 partition_size_in_bytes;
};

const TestDeviceData kTestDeviceData[] = {
  { kDeviceDCIM1, "UUID:FFF0-000F",
    StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM, 88788 },
  { kDeviceDCIM2, "VendorModelSerial:ComName:Model2010:8989",
    StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM,
    8773 },
  { kDeviceDCIM3, "VendorModelSerial:::WEM319X792",
    StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM, 22837 },
  { kDeviceNoDCIM, "UUID:ABCD-1234",
    StorageInfo::REMOVABLE_MASS_STORAGE_NO_DCIM, 512 },
  { kDeviceFixed, "UUID:743A-2349",
    StorageInfo::FIXED_MASS_STORAGE, 17282 },
};

scoped_ptr<StorageInfo> GetDeviceInfo(const base::FilePath& device_path,
                                      const base::FilePath& mount_point) {
  bool device_found = false;
  size_t i = 0;
  for (; i < arraysize(kTestDeviceData); i++) {
    if (device_path.value() == kTestDeviceData[i].device_path) {
      device_found = true;
      break;
    }
  }

  scoped_ptr<StorageInfo> storage_info;
  if (!device_found) {
    NOTREACHED();
    return storage_info.Pass();
  }

  StorageInfo::Type type = kTestDeviceData[i].type;
  storage_info.reset(new StorageInfo(
      StorageInfo::MakeDeviceId(type, kTestDeviceData[i].unique_id),
      mount_point.value(),
      base::ASCIIToUTF16("volume label"),
      base::ASCIIToUTF16("vendor name"),
      base::ASCIIToUTF16("model name"),
      kTestDeviceData[i].partition_size_in_bytes));
  return storage_info.Pass();
}

uint64 GetDevicePartitionSize(const std::string& device) {
  for (size_t i = 0; i < arraysize(kTestDeviceData); ++i) {
    if (device == kTestDeviceData[i].device_path)
      return kTestDeviceData[i].partition_size_in_bytes;
  }
  return 0;
}

std::string GetDeviceId(const std::string& device) {
  for (size_t i = 0; i < arraysize(kTestDeviceData); ++i) {
    if (device == kTestDeviceData[i].device_path) {
      return StorageInfo::MakeDeviceId(kTestDeviceData[i].type,
                                            kTestDeviceData[i].unique_id);
    }
  }
  if (device == kInvalidDevice) {
    return StorageInfo::MakeDeviceId(StorageInfo::FIXED_MASS_STORAGE,
                                          kInvalidDevice);
  }
  return std::string();
}

class TestStorageMonitorLinux : public StorageMonitorLinux {
 public:
  explicit TestStorageMonitorLinux(const base::FilePath& path)
      : StorageMonitorLinux(path) {
    SetMediaTransferProtocolManagerForTest(
        new TestMediaTransferProtocolManagerLinux());
    SetGetDeviceInfoCallbackForTest(base::Bind(&GetDeviceInfo));
  }
  virtual ~TestStorageMonitorLinux() {}

 private:
  virtual void UpdateMtab(
      const MtabWatcherLinux::MountPointDeviceMap& new_mtab) OVERRIDE {
    StorageMonitorLinux::UpdateMtab(new_mtab);
    base::MessageLoopProxy::current()->PostTask(
        FROM_HERE, base::MessageLoop::QuitClosure());
  }

  DISALLOW_COPY_AND_ASSIGN(TestStorageMonitorLinux);
};

class StorageMonitorLinuxTest : public testing::Test {
 public:
  struct MtabTestData {
    MtabTestData(const std::string& mount_device,
                 const std::string& mount_point,
                 const std::string& mount_type)
        : mount_device(mount_device),
          mount_point(mount_point),
          mount_type(mount_type) {
    }

    const std::string mount_device;
    const std::string mount_point;
    const std::string mount_type;
  };

  StorageMonitorLinuxTest()
      : thread_bundle_(content::TestBrowserThreadBundle::IO_MAINLOOP) {}
  virtual ~StorageMonitorLinuxTest() {}

 protected:
  virtual void SetUp() OVERRIDE {
    // Create and set up a temp dir with files for the test.
    ASSERT_TRUE(scoped_temp_dir_.CreateUniqueTempDir());
    base::FilePath test_dir = scoped_temp_dir_.path().AppendASCII("test_etc");
    ASSERT_TRUE(base::CreateDirectory(test_dir));
    mtab_file_ = test_dir.AppendASCII("test_mtab");
    MtabTestData initial_test_data[] = {
      MtabTestData("dummydevice", "dummydir", kInvalidFS),
    };
    WriteToMtab(initial_test_data,
                arraysize(initial_test_data),
                true  /* overwrite */);

    monitor_.reset(new TestStorageMonitorLinux(mtab_file_));

    mock_storage_observer_.reset(new MockRemovableStorageObserver);
    monitor_->AddObserver(mock_storage_observer_.get());

    monitor_->Init();
    base::RunLoop().RunUntilIdle();
  }

  virtual void TearDown() OVERRIDE {
    base::RunLoop().RunUntilIdle();
    monitor_->RemoveObserver(mock_storage_observer_.get());
    base::RunLoop().RunUntilIdle();

    // Linux storage monitor must be destroyed on the UI thread, so do it here.
    monitor_.reset();
  }

  // Append mtab entries from the |data| array of size |data_size| to the mtab
  // file, and run the message loop.
  void AppendToMtabAndRunLoop(const MtabTestData* data, size_t data_size) {
    WriteToMtab(data, data_size, false  /* do not overwrite */);
    base::RunLoop().Run();
  }

  // Overwrite the mtab file with mtab entries from the |data| array of size
  // |data_size|, and run the message loop.
  void OverwriteMtabAndRunLoop(const MtabTestData* data, size_t data_size) {
    WriteToMtab(data, data_size, true  /* overwrite */);
    base::RunLoop().Run();
  }

  // Simplied version of OverwriteMtabAndRunLoop() that just deletes all the
  // entries in the mtab file.
  void WriteEmptyMtabAndRunLoop() {
    OverwriteMtabAndRunLoop(NULL,  // No data.
                            0);    // No data length.
  }

  // Create a directory named |dir| relative to the test directory.
  // It has a DCIM directory, so StorageMonitorLinux recognizes it as a media
  // directory.
  base::FilePath CreateMountPointWithDCIMDir(const std::string& dir) {
    return CreateMountPoint(dir, true  /* create DCIM dir */);
  }

  // Create a directory named |dir| relative to the test directory.
  // It does not have a DCIM directory, so StorageMonitorLinux does not
  // recognize it as a media directory.
  base::FilePath CreateMountPointWithoutDCIMDir(const std::string& dir) {
    return CreateMountPoint(dir, false  /* do not create DCIM dir */);
  }

  void RemoveDCIMDirFromMountPoint(const std::string& dir) {
    base::FilePath dcim =
        scoped_temp_dir_.path().AppendASCII(dir).Append(kDCIMDirectoryName);
    base::DeleteFile(dcim, false);
  }

  MockRemovableStorageObserver& observer() {
    return *mock_storage_observer_;
  }

  StorageMonitor* notifier() {
    return monitor_.get();
  }

  uint64 GetStorageSize(const base::FilePath& path) {
    StorageInfo info;
    if (!notifier()->GetStorageInfoForPath(path, &info))
      return 0;

    return info.total_size_in_bytes();
  }

 private:
  // Create a directory named |dir| relative to the test directory.
  // Set |with_dcim_dir| to true if the created directory will have a "DCIM"
  // subdirectory.
  // Returns the full path to the created directory on success, or an empty
  // path on failure.
  base::FilePath CreateMountPoint(const std::string& dir, bool with_dcim_dir) {
    base::FilePath return_path(scoped_temp_dir_.path());
    return_path = return_path.AppendASCII(dir);
    base::FilePath path(return_path);
    if (with_dcim_dir)
      path = path.Append(kDCIMDirectoryName);
    if (!base::CreateDirectory(path))
      return base::FilePath();
    return return_path;
  }

  // Write the test mtab data to |mtab_file_|.
  // |data| is an array of mtab entries.
  // |data_size| is the array size of |data|.
  // |overwrite| specifies whether to overwrite |mtab_file_|.
  void WriteToMtab(const MtabTestData* data,
                   size_t data_size,
                   bool overwrite) {
    FILE* file = setmntent(mtab_file_.value().c_str(), overwrite ? "w" : "a");
    ASSERT_TRUE(file);

    // Due to the glibc *mntent() interface design, which is out of our
    // control, the mtnent struct has several char* fields, even though
    // addmntent() does not write to them in the calls below. To make the
    // compiler happy while avoiding making additional copies of strings,
    // we just const_cast() the strings' c_str()s.
    // Assuming addmntent() does not write to the char* fields, this is safe.
    // It is unlikely the platforms this test suite runs on will have an
    // addmntent() implementation that does change the char* fields. If that
    // was ever the case, the test suite will start crashing or failing.
    mntent entry;
    static const char kMountOpts[] = "rw";
    entry.mnt_opts = const_cast<char*>(kMountOpts);
    entry.mnt_freq = 0;
    entry.mnt_passno = 0;
    for (size_t i = 0; i < data_size; ++i) {
      entry.mnt_fsname = const_cast<char*>(data[i].mount_device.c_str());
      entry.mnt_dir = const_cast<char*>(data[i].mount_point.c_str());
      entry.mnt_type = const_cast<char*>(data[i].mount_type.c_str());
      ASSERT_EQ(0, addmntent(file, &entry));
    }
    ASSERT_EQ(1, endmntent(file));
  }

  content::TestBrowserThreadBundle thread_bundle_;

  scoped_ptr<MockRemovableStorageObserver> mock_storage_observer_;

  // Temporary directory for created test data.
  base::ScopedTempDir scoped_temp_dir_;
  // Path to the test mtab file.
  base::FilePath mtab_file_;

  scoped_ptr<TestStorageMonitorLinux> monitor_;

  DISALLOW_COPY_AND_ASSIGN(StorageMonitorLinuxTest);
};

// Simple test case where we attach and detach a media device.
TEST_F(StorageMonitorLinuxTest, BasicAttachDetach) {
  base::FilePath test_path = CreateMountPointWithDCIMDir(kMountPointA);
  ASSERT_FALSE(test_path.empty());
  MtabTestData test_data[] = {
    MtabTestData(kDeviceDCIM2, test_path.value(), kValidFS),
    MtabTestData(kDeviceFixed, kInvalidPath, kValidFS),
  };
  // Only |kDeviceDCIM2| should be attached, since |kDeviceFixed| has a bad
  // path.
  AppendToMtabAndRunLoop(test_data, arraysize(test_data));

  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceDCIM2), observer().last_attached().device_id());
  EXPECT_EQ(test_path.value(), observer().last_attached().location());

  // |kDeviceDCIM2| should be detached here.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceDCIM2), observer().last_detached().device_id());
}

// Only removable devices are recognized.
TEST_F(StorageMonitorLinuxTest, Removable) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  ASSERT_FALSE(test_path_a.empty());
  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
  };
  // |kDeviceDCIM1| should be attached as expected.
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));

  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceDCIM1), observer().last_attached().device_id());
  EXPECT_EQ(test_path_a.value(), observer().last_attached().location());

  // This should do nothing, since |kDeviceFixed| is not removable.
  base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
  ASSERT_FALSE(test_path_b.empty());
  MtabTestData test_data2[] = {
    MtabTestData(kDeviceFixed, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  // |kDeviceDCIM1| should be detached as expected.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceDCIM1), observer().last_detached().device_id());

  // |kDeviceNoDCIM| should be attached as expected.
  MtabTestData test_data3[] = {
    MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data3, arraysize(test_data3));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), observer().last_attached().device_id());
  EXPECT_EQ(test_path_b.value(), observer().last_attached().location());

  // |kDeviceNoDCIM| should be detached as expected.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(2, observer().detach_calls());
  EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), observer().last_detached().device_id());
}

// More complicated test case with multiple devices on multiple mount points.
TEST_F(StorageMonitorLinuxTest, SwapMountPoints) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
  ASSERT_FALSE(test_path_a.empty());
  ASSERT_FALSE(test_path_b.empty());

  // Attach two devices.
  // (*'d mounts are those StorageMonitor knows about.)
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM2 -> kMountPointB *
  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  // Detach two devices from old mount points and attach the devices at new
  // mount points.
  // kDeviceDCIM1 -> kMountPointB *
  // kDeviceDCIM2 -> kMountPointA *
  MtabTestData test_data2[] = {
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
    MtabTestData(kDeviceDCIM2, test_path_a.value(), kValidFS),
  };
  OverwriteMtabAndRunLoop(test_data2, arraysize(test_data2));
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(2, observer().detach_calls());

  // Detach all devices.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(4, observer().detach_calls());
}

// More complicated test case with multiple devices on multiple mount points.
TEST_F(StorageMonitorLinuxTest, MultiDevicesMultiMountPoints) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
  ASSERT_FALSE(test_path_a.empty());
  ASSERT_FALSE(test_path_b.empty());

  // Attach two devices.
  // (*'d mounts are those StorageMonitor knows about.)
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM2 -> kMountPointB *
  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  // Attach |kDeviceDCIM1| to |kMountPointB|.
  // |kDeviceDCIM2| is inaccessible, so it is detached. |kDeviceDCIM1| has been
  // attached at |kMountPointB|, but is still accessible from |kMountPointA|.
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM2 -> kMountPointB
  // kDeviceDCIM1 -> kMountPointB
  MtabTestData test_data2[] = {
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());

  // Detach |kDeviceDCIM1| from |kMountPointA|, causing a detach and attach
  // event.
  // kDeviceDCIM2 -> kMountPointB
  // kDeviceDCIM1 -> kMountPointB *
  MtabTestData test_data3[] = {
    MtabTestData(kDeviceDCIM2, test_path_b.value(), kValidFS),
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
  };
  OverwriteMtabAndRunLoop(test_data3, arraysize(test_data3));
  EXPECT_EQ(3, observer().attach_calls());
  EXPECT_EQ(2, observer().detach_calls());

  // Attach |kDeviceDCIM1| to |kMountPointA|.
  // kDeviceDCIM2 -> kMountPointB
  // kDeviceDCIM1 -> kMountPointB *
  // kDeviceDCIM1 -> kMountPointA
  MtabTestData test_data4[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data4, arraysize(test_data4));
  EXPECT_EQ(3, observer().attach_calls());
  EXPECT_EQ(2, observer().detach_calls());

  // Detach |kDeviceDCIM1| from |kMountPointB|.
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM2 -> kMountPointB *
  OverwriteMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(5, observer().attach_calls());
  EXPECT_EQ(3, observer().detach_calls());

  // Detach all devices.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(5, observer().attach_calls());
  EXPECT_EQ(5, observer().detach_calls());
}

TEST_F(StorageMonitorLinuxTest, MultipleMountPointsWithNonDCIMDevices) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  base::FilePath test_path_b = CreateMountPointWithDCIMDir(kMountPointB);
  ASSERT_FALSE(test_path_a.empty());
  ASSERT_FALSE(test_path_b.empty());

  // Attach to one first.
  // (*'d mounts are those StorageMonitor knows about.)
  // kDeviceDCIM1 -> kMountPointA *
  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  // Attach |kDeviceDCIM1| to |kMountPointB|.
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM1 -> kMountPointB
  MtabTestData test_data2[] = {
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));
  EXPECT_EQ(1, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  // Attach |kDeviceFixed| (a non-removable device) to |kMountPointA|.
  // kDeviceDCIM1 -> kMountPointA
  // kDeviceDCIM1 -> kMountPointB *
  // kDeviceFixed -> kMountPointA
  MtabTestData test_data3[] = {
    MtabTestData(kDeviceFixed, test_path_a.value(), kValidFS),
  };
  RemoveDCIMDirFromMountPoint(kMountPointA);
  AppendToMtabAndRunLoop(test_data3, arraysize(test_data3));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());

  // Detach |kDeviceFixed|.
  // kDeviceDCIM1 -> kMountPointA
  // kDeviceDCIM1 -> kMountPointB *
  MtabTestData test_data4[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
  };
  CreateMountPointWithDCIMDir(kMountPointA);
  OverwriteMtabAndRunLoop(test_data4, arraysize(test_data4));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());

  // Attach |kDeviceNoDCIM| (a non-DCIM device) to |kMountPointB|.
  // kDeviceDCIM1  -> kMountPointA *
  // kDeviceDCIM1  -> kMountPointB
  // kDeviceNoDCIM -> kMountPointB *
  MtabTestData test_data5[] = {
    MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
  };
  base::DeleteFile(test_path_b.Append(kDCIMDirectoryName), false);
  AppendToMtabAndRunLoop(test_data5, arraysize(test_data5));
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(2, observer().detach_calls());

  // Detach |kDeviceNoDCIM|.
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceDCIM1 -> kMountPointB
  MtabTestData test_data6[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceDCIM1, test_path_b.value(), kValidFS),
  };
  CreateMountPointWithDCIMDir(kMountPointB);
  OverwriteMtabAndRunLoop(test_data6, arraysize(test_data6));
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(3, observer().detach_calls());

  // Detach |kDeviceDCIM1| from |kMountPointB|.
  // kDeviceDCIM1 -> kMountPointA *
  OverwriteMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(3, observer().detach_calls());

  // Detach all devices.
  WriteEmptyMtabAndRunLoop();
  EXPECT_EQ(4, observer().attach_calls());
  EXPECT_EQ(4, observer().detach_calls());
}

TEST_F(StorageMonitorLinuxTest, DeviceLookUp) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
  base::FilePath test_path_c = CreateMountPointWithoutDCIMDir(kMountPointC);
  ASSERT_FALSE(test_path_a.empty());
  ASSERT_FALSE(test_path_b.empty());
  ASSERT_FALSE(test_path_c.empty());

  // Attach to one first.
  // (starred mounts are those StorageMonitor knows about.)
  // kDeviceDCIM1  -> kMountPointA *
  // kDeviceNoDCIM -> kMountPointB *
  // kDeviceFixed  -> kMountPointC
  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
    MtabTestData(kDeviceFixed, test_path_c.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  StorageInfo device_info;
  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());
  EXPECT_EQ(test_path_a.value(), device_info.location());
  EXPECT_EQ(88788ULL, device_info.total_size_in_bytes());
  EXPECT_EQ(base::ASCIIToUTF16("volume label"), device_info.storage_label());
  EXPECT_EQ(base::ASCIIToUTF16("vendor name"), device_info.vendor_name());
  EXPECT_EQ(base::ASCIIToUTF16("model name"), device_info.model_name());

  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceNoDCIM), device_info.device_id());
  EXPECT_EQ(test_path_b.value(), device_info.location());

  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());
  EXPECT_EQ(test_path_c.value(), device_info.location());

  // An invalid path.
  EXPECT_FALSE(notifier()->GetStorageInfoForPath(base::FilePath(kInvalidPath),
                                                 &device_info));

  // Test filling in of the mount point.
  EXPECT_TRUE(
      notifier()->GetStorageInfoForPath(test_path_a.Append("some/other/path"),
      &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());
  EXPECT_EQ(test_path_a.value(), device_info.location());

  // One device attached at multiple points.
  // kDeviceDCIM1 -> kMountPointA *
  // kDeviceFixed -> kMountPointB
  // kDeviceFixed -> kMountPointC
  MtabTestData test_data2[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceFixed, test_path_b.value(), kValidFS),
    MtabTestData(kDeviceFixed, test_path_c.value(), kValidFS),
  };
  AppendToMtabAndRunLoop(test_data2, arraysize(test_data2));

  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceDCIM1), device_info.device_id());

  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());

  EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c, &device_info));
  EXPECT_EQ(GetDeviceId(kDeviceFixed), device_info.device_id());

  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(1, observer().detach_calls());
}

TEST_F(StorageMonitorLinuxTest, DevicePartitionSize) {
  base::FilePath test_path_a = CreateMountPointWithDCIMDir(kMountPointA);
  base::FilePath test_path_b = CreateMountPointWithoutDCIMDir(kMountPointB);
  ASSERT_FALSE(test_path_a.empty());
  ASSERT_FALSE(test_path_b.empty());

  MtabTestData test_data1[] = {
    MtabTestData(kDeviceDCIM1, test_path_a.value(), kValidFS),
    MtabTestData(kDeviceNoDCIM, test_path_b.value(), kValidFS),
    MtabTestData(kDeviceFixed, kInvalidPath, kInvalidFS),
  };
  AppendToMtabAndRunLoop(test_data1, arraysize(test_data1));
  EXPECT_EQ(2, observer().attach_calls());
  EXPECT_EQ(0, observer().detach_calls());

  EXPECT_EQ(GetDevicePartitionSize(kDeviceDCIM1),
            GetStorageSize(test_path_a));
  EXPECT_EQ(GetDevicePartitionSize(kDeviceNoDCIM),
            GetStorageSize(test_path_b));
  EXPECT_EQ(GetDevicePartitionSize(kInvalidPath),
            GetStorageSize(base::FilePath(kInvalidPath)));
}

}  // namespace

}  // namespace storage_monitor

/* [<][>][^][v][top][bottom][index][help] */