root/third_party/protobuf/src/google/protobuf/compiler/cpp/cpp_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. AddError
  2. TEST
  3. TEST
  4. TEST
  5. TEST
  6. TEST
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. TEST
  12. TEST
  13. TEST
  14. TEST
  15. TEST
  16. TEST
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST
  22. TEST
  23. TEST
  24. TEST
  25. TEST
  26. TEST
  27. TEST
  28. TEST
  29. TEST
  30. TEST
  31. TEST
  32. TEST
  33. TEST
  34. TEST
  35. TEST
  36. TEST
  37. TEST
  38. TEST
  39. TEST
  40. TEST
  41. TEST
  42. TEST
  43. TEST
  44. TEST
  45. TEST
  46. TEST
  47. TEST
  48. TEST
  49. TEST
  50. done_
  51. Reset
  52. Foo
  53. Bar
  54. destroyed_
  55. Reset
  56. CallMethod
  57. Reset
  58. Failed
  59. ErrorText
  60. StartCancel
  61. SetFailed
  62. IsCanceled
  63. NotifyOnCancel
  64. done_
  65. SetUp
  66. TEST_F
  67. TEST_F
  68. TEST_F
  69. TEST_F
  70. TEST_F
  71. TEST_F
  72. TEST_F
  73. TEST_F
  74. SetFailed
  75. TEST_F
  76. TEST

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// To test the code generator, we actually use it to generate code for
// google/protobuf/unittest.proto, then test that.  This means that we
// are actually testing the parser and other parts of the system at the same
// time, and that problems in the generator may show up as compile-time errors
// rather than unittest failures, which may be surprising.  However, testing
// the output of the C++ generator directly would be very hard.  We can't very
// well just check it against golden files since those files would have to be
// updated for any small change; such a test would be very brittle and probably
// not very helpful.  What we really want to test is that the code compiles
// correctly and produces the interfaces we expect, which is why this test
// is written this way.

#include <google/protobuf/compiler/cpp/cpp_unittest.h>

#include <vector>

#include <google/protobuf/unittest.pb.h>
#include <google/protobuf/unittest_optimize_for.pb.h>
#include <google/protobuf/unittest_embed_optimize_for.pb.h>
#include <google/protobuf/unittest_no_generic_services.pb.h>
#include <google/protobuf/test_util.h>
#include <google/protobuf/compiler/cpp/cpp_test_bad_identifiers.pb.h>
#include <google/protobuf/compiler/importer.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/dynamic_message.h>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/stubs/stl_util.h>

namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {

// Can't use an anonymous namespace here due to brokenness of Tru64 compiler.
namespace cpp_unittest {

namespace protobuf_unittest = ::protobuf_unittest;


class MockErrorCollector : public MultiFileErrorCollector {
 public:
  MockErrorCollector() {}
  ~MockErrorCollector() {}

  string text_;

  // implements ErrorCollector ---------------------------------------
  void AddError(const string& filename, int line, int column,
                const string& message) {
    strings::SubstituteAndAppend(&text_, "$0:$1:$2: $3\n",
                                 filename, line, column, message);
  }
};

#ifndef PROTOBUF_TEST_NO_DESCRIPTORS

// Test that generated code has proper descriptors:
// Parse a descriptor directly (using google::protobuf::compiler::Importer) and
// compare it to the one that was produced by generated code.
TEST(GeneratedDescriptorTest, IdenticalDescriptors) {
  const FileDescriptor* generated_descriptor =
    unittest::TestAllTypes::descriptor()->file();

  // Set up the Importer.
  MockErrorCollector error_collector;
  DiskSourceTree source_tree;
  source_tree.MapPath("", TestSourceDir());
  Importer importer(&source_tree, &error_collector);

  // Import (parse) unittest.proto.
  const FileDescriptor* parsed_descriptor =
    importer.Import("google/protobuf/unittest.proto");
  EXPECT_EQ("", error_collector.text_);
  ASSERT_TRUE(parsed_descriptor != NULL);

  // Test that descriptors are generated correctly by converting them to
  // FileDescriptorProtos and comparing.
  FileDescriptorProto generated_decsriptor_proto, parsed_descriptor_proto;
  generated_descriptor->CopyTo(&generated_decsriptor_proto);
  parsed_descriptor->CopyTo(&parsed_descriptor_proto);

  EXPECT_EQ(parsed_descriptor_proto.DebugString(),
            generated_decsriptor_proto.DebugString());
}

#endif  // !PROTOBUF_TEST_NO_DESCRIPTORS

// ===================================================================

TEST(GeneratedMessageTest, Defaults) {
  // Check that all default values are set correctly in the initial message.
  unittest::TestAllTypes message;

  TestUtil::ExpectClear(message);

  // Messages should return pointers to default instances until first use.
  // (This is not checked by ExpectClear() since it is not actually true after
  // the fields have been set and then cleared.)
  EXPECT_EQ(&unittest::TestAllTypes::OptionalGroup::default_instance(),
            &message.optionalgroup());
  EXPECT_EQ(&unittest::TestAllTypes::NestedMessage::default_instance(),
            &message.optional_nested_message());
  EXPECT_EQ(&unittest::ForeignMessage::default_instance(),
            &message.optional_foreign_message());
  EXPECT_EQ(&unittest_import::ImportMessage::default_instance(),
            &message.optional_import_message());
}

TEST(GeneratedMessageTest, FloatingPointDefaults) {
  const unittest::TestExtremeDefaultValues& extreme_default =
      unittest::TestExtremeDefaultValues::default_instance();

  EXPECT_EQ(0.0f, extreme_default.zero_float());
  EXPECT_EQ(1.0f, extreme_default.one_float());
  EXPECT_EQ(1.5f, extreme_default.small_float());
  EXPECT_EQ(-1.0f, extreme_default.negative_one_float());
  EXPECT_EQ(-1.5f, extreme_default.negative_float());
  EXPECT_EQ(2.0e8f, extreme_default.large_float());
  EXPECT_EQ(-8e-28f, extreme_default.small_negative_float());
  EXPECT_EQ(numeric_limits<double>::infinity(),
            extreme_default.inf_double());
  EXPECT_EQ(-numeric_limits<double>::infinity(),
            extreme_default.neg_inf_double());
  EXPECT_TRUE(extreme_default.nan_double() != extreme_default.nan_double());
  EXPECT_EQ(numeric_limits<float>::infinity(),
            extreme_default.inf_float());
  EXPECT_EQ(-numeric_limits<float>::infinity(),
            extreme_default.neg_inf_float());
  EXPECT_TRUE(extreme_default.nan_float() != extreme_default.nan_float());
}

TEST(GeneratedMessageTest, Trigraph) {
  const unittest::TestExtremeDefaultValues& extreme_default =
      unittest::TestExtremeDefaultValues::default_instance();

  EXPECT_EQ("? ? ?? ?? ??? ?\?/ ?\?-", extreme_default.cpp_trigraph());
}

TEST(GeneratedMessageTest, ExtremeSmallIntegerDefault) {
  const unittest::TestExtremeDefaultValues& extreme_default =
      unittest::TestExtremeDefaultValues::default_instance();
  EXPECT_EQ(-0x80000000, kint32min);
  EXPECT_EQ(GOOGLE_LONGLONG(-0x8000000000000000), kint64min);
  EXPECT_EQ(kint32min, extreme_default.really_small_int32());
  EXPECT_EQ(kint64min, extreme_default.really_small_int64());
}

TEST(GeneratedMessageTest, Accessors) {
  // Set every field to a unique value then go back and check all those
  // values.
  unittest::TestAllTypes message;

  TestUtil::SetAllFields(&message);
  TestUtil::ExpectAllFieldsSet(message);

  TestUtil::ModifyRepeatedFields(&message);
  TestUtil::ExpectRepeatedFieldsModified(message);
}

TEST(GeneratedMessageTest, MutableStringDefault) {
  // mutable_foo() for a string should return a string initialized to its
  // default value.
  unittest::TestAllTypes message;

  EXPECT_EQ("hello", *message.mutable_default_string());

  // Note that the first time we call mutable_foo(), we get a newly-allocated
  // string, but if we clear it and call it again, we get the same object again.
  // We should verify that it has its default value in both cases.
  message.set_default_string("blah");
  message.Clear();

  EXPECT_EQ("hello", *message.mutable_default_string());
}

TEST(GeneratedMessageTest, StringDefaults) {
  unittest::TestExtremeDefaultValues message;
  // Check if '\000' can be used in default string value.
  EXPECT_EQ(string("hel\000lo", 6), message.string_with_zero());
  EXPECT_EQ(string("wor\000ld", 6), message.bytes_with_zero());
}

TEST(GeneratedMessageTest, ReleaseString) {
  // Check that release_foo() starts out NULL, and gives us a value
  // that we can delete after it's been set.
  unittest::TestAllTypes message;

  EXPECT_EQ(NULL, message.release_default_string());
  EXPECT_FALSE(message.has_default_string());
  EXPECT_EQ("hello", message.default_string());

  message.set_default_string("blah");
  EXPECT_TRUE(message.has_default_string());
  string* str = message.release_default_string();
  EXPECT_FALSE(message.has_default_string());
  ASSERT_TRUE(str != NULL);
  EXPECT_EQ("blah", *str);
  delete str;

  EXPECT_EQ(NULL, message.release_default_string());
  EXPECT_FALSE(message.has_default_string());
  EXPECT_EQ("hello", message.default_string());
}

TEST(GeneratedMessageTest, ReleaseMessage) {
  // Check that release_foo() starts out NULL, and gives us a value
  // that we can delete after it's been set.
  unittest::TestAllTypes message;

  EXPECT_EQ(NULL, message.release_optional_nested_message());
  EXPECT_FALSE(message.has_optional_nested_message());

  message.mutable_optional_nested_message()->set_bb(1);
  unittest::TestAllTypes::NestedMessage* nest =
      message.release_optional_nested_message();
  EXPECT_FALSE(message.has_optional_nested_message());
  ASSERT_TRUE(nest != NULL);
  EXPECT_EQ(1, nest->bb());
  delete nest;

  EXPECT_EQ(NULL, message.release_optional_nested_message());
  EXPECT_FALSE(message.has_optional_nested_message());
}

TEST(GeneratedMessageTest, SetAllocatedString) {
  // Check that set_allocated_foo() works for strings.
  unittest::TestAllTypes message;

  EXPECT_FALSE(message.has_optional_string());
  const string kHello("hello");
  message.set_optional_string(kHello);
  EXPECT_TRUE(message.has_optional_string());

  message.set_allocated_optional_string(NULL);
  EXPECT_FALSE(message.has_optional_string());
  EXPECT_EQ("", message.optional_string());

  message.set_allocated_optional_string(new string(kHello));
  EXPECT_TRUE(message.has_optional_string());
  EXPECT_EQ(kHello, message.optional_string());
}

TEST(GeneratedMessageTest, SetAllocatedMessage) {
  // Check that set_allocated_foo() can be called in all cases.
  unittest::TestAllTypes message;

  EXPECT_FALSE(message.has_optional_nested_message());

  message.mutable_optional_nested_message()->set_bb(1);
  EXPECT_TRUE(message.has_optional_nested_message());

  message.set_allocated_optional_nested_message(NULL);
  EXPECT_FALSE(message.has_optional_nested_message());
  EXPECT_EQ(&unittest::TestAllTypes::NestedMessage::default_instance(),
            &message.optional_nested_message());

  message.mutable_optional_nested_message()->set_bb(1);
  unittest::TestAllTypes::NestedMessage* nest =
      message.release_optional_nested_message();
  ASSERT_TRUE(nest != NULL);
  EXPECT_FALSE(message.has_optional_nested_message());

  message.set_allocated_optional_nested_message(nest);
  EXPECT_TRUE(message.has_optional_nested_message());
  EXPECT_EQ(1, message.optional_nested_message().bb());
}

TEST(GeneratedMessageTest, Clear) {
  // Set every field to a unique value, clear the message, then check that
  // it is cleared.
  unittest::TestAllTypes message;

  TestUtil::SetAllFields(&message);
  message.Clear();
  TestUtil::ExpectClear(message);

  // Unlike with the defaults test, we do NOT expect that requesting embedded
  // messages will return a pointer to the default instance.  Instead, they
  // should return the objects that were created when mutable_blah() was
  // called.
  EXPECT_NE(&unittest::TestAllTypes::OptionalGroup::default_instance(),
            &message.optionalgroup());
  EXPECT_NE(&unittest::TestAllTypes::NestedMessage::default_instance(),
            &message.optional_nested_message());
  EXPECT_NE(&unittest::ForeignMessage::default_instance(),
            &message.optional_foreign_message());
  EXPECT_NE(&unittest_import::ImportMessage::default_instance(),
            &message.optional_import_message());
}

TEST(GeneratedMessageTest, EmbeddedNullsInBytesCharStar) {
  unittest::TestAllTypes message;

  const char* value = "\0lalala\0\0";
  message.set_optional_bytes(value, 9);
  ASSERT_EQ(9, message.optional_bytes().size());
  EXPECT_EQ(0, memcmp(value, message.optional_bytes().data(), 9));

  message.add_repeated_bytes(value, 9);
  ASSERT_EQ(9, message.repeated_bytes(0).size());
  EXPECT_EQ(0, memcmp(value, message.repeated_bytes(0).data(), 9));
}

TEST(GeneratedMessageTest, ClearOneField) {
  // Set every field to a unique value, then clear one value and insure that
  // only that one value is cleared.
  unittest::TestAllTypes message;

  TestUtil::SetAllFields(&message);
  int64 original_value = message.optional_int64();

  // Clear the field and make sure it shows up as cleared.
  message.clear_optional_int64();
  EXPECT_FALSE(message.has_optional_int64());
  EXPECT_EQ(0, message.optional_int64());

  // Other adjacent fields should not be cleared.
  EXPECT_TRUE(message.has_optional_int32());
  EXPECT_TRUE(message.has_optional_uint32());

  // Make sure if we set it again, then all fields are set.
  message.set_optional_int64(original_value);
  TestUtil::ExpectAllFieldsSet(message);
}

TEST(GeneratedMessageTest, StringCharStarLength) {
  // Verify that we can use a char*,length to set one of the string fields.
  unittest::TestAllTypes message;
  message.set_optional_string("abcdef", 3);
  EXPECT_EQ("abc", message.optional_string());

  // Verify that we can use a char*,length to add to a repeated string field.
  message.add_repeated_string("abcdef", 3);
  EXPECT_EQ(1, message.repeated_string_size());
  EXPECT_EQ("abc", message.repeated_string(0));

  // Verify that we can use a char*,length to set a repeated string field.
  message.set_repeated_string(0, "wxyz", 2);
  EXPECT_EQ("wx", message.repeated_string(0));
}

TEST(GeneratedMessageTest, CopyFrom) {
  unittest::TestAllTypes message1, message2;

  TestUtil::SetAllFields(&message1);
  message2.CopyFrom(message1);
  TestUtil::ExpectAllFieldsSet(message2);

  // Copying from self should be a no-op.
  message2.CopyFrom(message2);
  TestUtil::ExpectAllFieldsSet(message2);
}

TEST(GeneratedMessageTest, SwapWithEmpty) {
  unittest::TestAllTypes message1, message2;
  TestUtil::SetAllFields(&message1);

  TestUtil::ExpectAllFieldsSet(message1);
  TestUtil::ExpectClear(message2);
  message1.Swap(&message2);
  TestUtil::ExpectAllFieldsSet(message2);
  TestUtil::ExpectClear(message1);
}

TEST(GeneratedMessageTest, SwapWithSelf) {
  unittest::TestAllTypes message;
  TestUtil::SetAllFields(&message);
  TestUtil::ExpectAllFieldsSet(message);
  message.Swap(&message);
  TestUtil::ExpectAllFieldsSet(message);
}

TEST(GeneratedMessageTest, SwapWithOther) {
  unittest::TestAllTypes message1, message2;

  message1.set_optional_int32(123);
  message1.set_optional_string("abc");
  message1.mutable_optional_nested_message()->set_bb(1);
  message1.set_optional_nested_enum(unittest::TestAllTypes::FOO);
  message1.add_repeated_int32(1);
  message1.add_repeated_int32(2);
  message1.add_repeated_string("a");
  message1.add_repeated_string("b");
  message1.add_repeated_nested_message()->set_bb(7);
  message1.add_repeated_nested_message()->set_bb(8);
  message1.add_repeated_nested_enum(unittest::TestAllTypes::FOO);
  message1.add_repeated_nested_enum(unittest::TestAllTypes::BAR);

  message2.set_optional_int32(456);
  message2.set_optional_string("def");
  message2.mutable_optional_nested_message()->set_bb(2);
  message2.set_optional_nested_enum(unittest::TestAllTypes::BAR);
  message2.add_repeated_int32(3);
  message2.add_repeated_string("c");
  message2.add_repeated_nested_message()->set_bb(9);
  message2.add_repeated_nested_enum(unittest::TestAllTypes::BAZ);

  message1.Swap(&message2);

  EXPECT_EQ(456, message1.optional_int32());
  EXPECT_EQ("def", message1.optional_string());
  EXPECT_EQ(2, message1.optional_nested_message().bb());
  EXPECT_EQ(unittest::TestAllTypes::BAR, message1.optional_nested_enum());
  ASSERT_EQ(1, message1.repeated_int32_size());
  EXPECT_EQ(3, message1.repeated_int32(0));
  ASSERT_EQ(1, message1.repeated_string_size());
  EXPECT_EQ("c", message1.repeated_string(0));
  ASSERT_EQ(1, message1.repeated_nested_message_size());
  EXPECT_EQ(9, message1.repeated_nested_message(0).bb());
  ASSERT_EQ(1, message1.repeated_nested_enum_size());
  EXPECT_EQ(unittest::TestAllTypes::BAZ, message1.repeated_nested_enum(0));

  EXPECT_EQ(123, message2.optional_int32());
  EXPECT_EQ("abc", message2.optional_string());
  EXPECT_EQ(1, message2.optional_nested_message().bb());
  EXPECT_EQ(unittest::TestAllTypes::FOO, message2.optional_nested_enum());
  ASSERT_EQ(2, message2.repeated_int32_size());
  EXPECT_EQ(1, message2.repeated_int32(0));
  EXPECT_EQ(2, message2.repeated_int32(1));
  ASSERT_EQ(2, message2.repeated_string_size());
  EXPECT_EQ("a", message2.repeated_string(0));
  EXPECT_EQ("b", message2.repeated_string(1));
  ASSERT_EQ(2, message2.repeated_nested_message_size());
  EXPECT_EQ(7, message2.repeated_nested_message(0).bb());
  EXPECT_EQ(8, message2.repeated_nested_message(1).bb());
  ASSERT_EQ(2, message2.repeated_nested_enum_size());
  EXPECT_EQ(unittest::TestAllTypes::FOO, message2.repeated_nested_enum(0));
  EXPECT_EQ(unittest::TestAllTypes::BAR, message2.repeated_nested_enum(1));
}

TEST(GeneratedMessageTest, CopyConstructor) {
  unittest::TestAllTypes message1;
  TestUtil::SetAllFields(&message1);

  unittest::TestAllTypes message2(message1);
  TestUtil::ExpectAllFieldsSet(message2);
}

TEST(GeneratedMessageTest, CopyAssignmentOperator) {
  unittest::TestAllTypes message1;
  TestUtil::SetAllFields(&message1);

  unittest::TestAllTypes message2;
  message2 = message1;
  TestUtil::ExpectAllFieldsSet(message2);

  // Make sure that self-assignment does something sane.
  message2.operator=(message2);
  TestUtil::ExpectAllFieldsSet(message2);
}

#if !defined(PROTOBUF_TEST_NO_DESCRIPTORS) || \
    !defined(GOOGLE_PROTOBUF_NO_RTTI)
TEST(GeneratedMessageTest, UpcastCopyFrom) {
  // Test the CopyFrom method that takes in the generic const Message&
  // parameter.
  unittest::TestAllTypes message1, message2;

  TestUtil::SetAllFields(&message1);

  const Message* source = implicit_cast<const Message*>(&message1);
  message2.CopyFrom(*source);

  TestUtil::ExpectAllFieldsSet(message2);
}
#endif

#ifndef PROTOBUF_TEST_NO_DESCRIPTORS

TEST(GeneratedMessageTest, DynamicMessageCopyFrom) {
  // Test copying from a DynamicMessage, which must fall back to using
  // reflection.
  unittest::TestAllTypes message2;

  // Construct a new version of the dynamic message via the factory.
  DynamicMessageFactory factory;
  scoped_ptr<Message> message1;
  message1.reset(factory.GetPrototype(
                     unittest::TestAllTypes::descriptor())->New());

  TestUtil::ReflectionTester reflection_tester(
    unittest::TestAllTypes::descriptor());
  reflection_tester.SetAllFieldsViaReflection(message1.get());

  message2.CopyFrom(*message1);

  TestUtil::ExpectAllFieldsSet(message2);
}

#endif  // !PROTOBUF_TEST_NO_DESCRIPTORS

TEST(GeneratedMessageTest, NonEmptyMergeFrom) {
  // Test merging with a non-empty message. Code is a modified form
  // of that found in google/protobuf/reflection_ops_unittest.cc.
  unittest::TestAllTypes message1, message2;

  TestUtil::SetAllFields(&message1);

  // This field will test merging into an empty spot.
  message2.set_optional_int32(message1.optional_int32());
  message1.clear_optional_int32();

  // This tests overwriting.
  message2.set_optional_string(message1.optional_string());
  message1.set_optional_string("something else");

  // This tests concatenating.
  message2.add_repeated_int32(message1.repeated_int32(1));
  int32 i = message1.repeated_int32(0);
  message1.clear_repeated_int32();
  message1.add_repeated_int32(i);

  message1.MergeFrom(message2);

  TestUtil::ExpectAllFieldsSet(message1);
}

#if !defined(PROTOBUF_TEST_NO_DESCRIPTORS) || \
    !defined(GOOGLE_PROTOBUF_NO_RTTI)
#ifdef PROTOBUF_HAS_DEATH_TEST

TEST(GeneratedMessageTest, MergeFromSelf) {
  unittest::TestAllTypes message;
  EXPECT_DEATH(message.MergeFrom(message), "&from");
  EXPECT_DEATH(message.MergeFrom(implicit_cast<const Message&>(message)),
               "&from");
}

#endif  // PROTOBUF_HAS_DEATH_TEST
#endif  // !PROTOBUF_TEST_NO_DESCRIPTORS || !GOOGLE_PROTOBUF_NO_RTTI

// Test the generated SerializeWithCachedSizesToArray(),
TEST(GeneratedMessageTest, SerializationToArray) {
  unittest::TestAllTypes message1, message2;
  string data;
  TestUtil::SetAllFields(&message1);
  int size = message1.ByteSize();
  data.resize(size);
  uint8* start = reinterpret_cast<uint8*>(string_as_array(&data));
  uint8* end = message1.SerializeWithCachedSizesToArray(start);
  EXPECT_EQ(size, end - start);
  EXPECT_TRUE(message2.ParseFromString(data));
  TestUtil::ExpectAllFieldsSet(message2);

}

TEST(GeneratedMessageTest, PackedFieldsSerializationToArray) {
  unittest::TestPackedTypes packed_message1, packed_message2;
  string packed_data;
  TestUtil::SetPackedFields(&packed_message1);
  int packed_size = packed_message1.ByteSize();
  packed_data.resize(packed_size);
  uint8* start = reinterpret_cast<uint8*>(string_as_array(&packed_data));
  uint8* end = packed_message1.SerializeWithCachedSizesToArray(start);
  EXPECT_EQ(packed_size, end - start);
  EXPECT_TRUE(packed_message2.ParseFromString(packed_data));
  TestUtil::ExpectPackedFieldsSet(packed_message2);
}

// Test the generated SerializeWithCachedSizes() by forcing the buffer to write
// one byte at a time.
TEST(GeneratedMessageTest, SerializationToStream) {
  unittest::TestAllTypes message1, message2;
  TestUtil::SetAllFields(&message1);
  int size = message1.ByteSize();
  string data;
  data.resize(size);
  {
    // Allow the output stream to buffer only one byte at a time.
    io::ArrayOutputStream array_stream(string_as_array(&data), size, 1);
    io::CodedOutputStream output_stream(&array_stream);
    message1.SerializeWithCachedSizes(&output_stream);
    EXPECT_FALSE(output_stream.HadError());
    EXPECT_EQ(size, output_stream.ByteCount());
  }
  EXPECT_TRUE(message2.ParseFromString(data));
  TestUtil::ExpectAllFieldsSet(message2);

}

TEST(GeneratedMessageTest, PackedFieldsSerializationToStream) {
  unittest::TestPackedTypes message1, message2;
  TestUtil::SetPackedFields(&message1);
  int size = message1.ByteSize();
  string data;
  data.resize(size);
  {
    // Allow the output stream to buffer only one byte at a time.
    io::ArrayOutputStream array_stream(string_as_array(&data), size, 1);
    io::CodedOutputStream output_stream(&array_stream);
    message1.SerializeWithCachedSizes(&output_stream);
    EXPECT_FALSE(output_stream.HadError());
    EXPECT_EQ(size, output_stream.ByteCount());
  }
  EXPECT_TRUE(message2.ParseFromString(data));
  TestUtil::ExpectPackedFieldsSet(message2);
}


TEST(GeneratedMessageTest, Required) {
  // Test that IsInitialized() returns false if required fields are missing.
  unittest::TestRequired message;

  EXPECT_FALSE(message.IsInitialized());
  message.set_a(1);
  EXPECT_FALSE(message.IsInitialized());
  message.set_b(2);
  EXPECT_FALSE(message.IsInitialized());
  message.set_c(3);
  EXPECT_TRUE(message.IsInitialized());
}

TEST(GeneratedMessageTest, RequiredForeign) {
  // Test that IsInitialized() returns false if required fields in nested
  // messages are missing.
  unittest::TestRequiredForeign message;

  EXPECT_TRUE(message.IsInitialized());

  message.mutable_optional_message();
  EXPECT_FALSE(message.IsInitialized());

  message.mutable_optional_message()->set_a(1);
  message.mutable_optional_message()->set_b(2);
  message.mutable_optional_message()->set_c(3);
  EXPECT_TRUE(message.IsInitialized());

  message.add_repeated_message();
  EXPECT_FALSE(message.IsInitialized());

  message.mutable_repeated_message(0)->set_a(1);
  message.mutable_repeated_message(0)->set_b(2);
  message.mutable_repeated_message(0)->set_c(3);
  EXPECT_TRUE(message.IsInitialized());
}

TEST(GeneratedMessageTest, ForeignNested) {
  // Test that TestAllTypes::NestedMessage can be embedded directly into
  // another message.
  unittest::TestForeignNested message;

  // If this compiles and runs without crashing, it must work.  We have
  // nothing more to test.
  unittest::TestAllTypes::NestedMessage* nested =
    message.mutable_foreign_nested();
  nested->set_bb(1);
}

TEST(GeneratedMessageTest, ReallyLargeTagNumber) {
  // Test that really large tag numbers don't break anything.
  unittest::TestReallyLargeTagNumber message1, message2;
  string data;

  // For the most part, if this compiles and runs then we're probably good.
  // (The most likely cause for failure would be if something were attempting
  // to allocate a lookup table of some sort using tag numbers as the index.)
  // We'll try serializing just for fun.
  message1.set_a(1234);
  message1.set_bb(5678);
  message1.SerializeToString(&data);
  EXPECT_TRUE(message2.ParseFromString(data));
  EXPECT_EQ(1234, message2.a());
  EXPECT_EQ(5678, message2.bb());
}

TEST(GeneratedMessageTest, MutualRecursion) {
  // Test that mutually-recursive message types work.
  unittest::TestMutualRecursionA message;
  unittest::TestMutualRecursionA* nested = message.mutable_bb()->mutable_a();
  unittest::TestMutualRecursionA* nested2 = nested->mutable_bb()->mutable_a();

  // Again, if the above compiles and runs, that's all we really have to
  // test, but just for run we'll check that the system didn't somehow come
  // up with a pointer loop...
  EXPECT_NE(&message, nested);
  EXPECT_NE(&message, nested2);
  EXPECT_NE(nested, nested2);
}

TEST(GeneratedMessageTest, CamelCaseFieldNames) {
  // This test is mainly checking that the following compiles, which verifies
  // that the field names were coerced to lower-case.
  //
  // Protocol buffers standard style is to use lowercase-with-underscores for
  // field names.  Some old proto1 .protos unfortunately used camel-case field
  // names.  In proto1, these names were forced to lower-case.  So, we do the
  // same thing in proto2.

  unittest::TestCamelCaseFieldNames message;

  message.set_primitivefield(2);
  message.set_stringfield("foo");
  message.set_enumfield(unittest::FOREIGN_FOO);
  message.mutable_messagefield()->set_c(6);

  message.add_repeatedprimitivefield(8);
  message.add_repeatedstringfield("qux");
  message.add_repeatedenumfield(unittest::FOREIGN_BAR);
  message.add_repeatedmessagefield()->set_c(15);

  EXPECT_EQ(2, message.primitivefield());
  EXPECT_EQ("foo", message.stringfield());
  EXPECT_EQ(unittest::FOREIGN_FOO, message.enumfield());
  EXPECT_EQ(6, message.messagefield().c());

  EXPECT_EQ(8, message.repeatedprimitivefield(0));
  EXPECT_EQ("qux", message.repeatedstringfield(0));
  EXPECT_EQ(unittest::FOREIGN_BAR, message.repeatedenumfield(0));
  EXPECT_EQ(15, message.repeatedmessagefield(0).c());
}

TEST(GeneratedMessageTest, TestConflictingSymbolNames) {
  // test_bad_identifiers.proto successfully compiled, then it works.  The
  // following is just a token usage to insure that the code is, in fact,
  // being compiled and linked.

  protobuf_unittest::TestConflictingSymbolNames message;
  message.set_uint32(1);
  EXPECT_EQ(3, message.ByteSize());

  message.set_friend_(5);
  EXPECT_EQ(5, message.friend_());

  // Instantiate extension template functions to test conflicting template
  // parameter names.
  typedef protobuf_unittest::TestConflictingSymbolNamesExtension ExtensionMessage;
  message.AddExtension(ExtensionMessage::repeated_int32_ext, 123);
  EXPECT_EQ(123,
            message.GetExtension(ExtensionMessage::repeated_int32_ext, 0));
}

#ifndef PROTOBUF_TEST_NO_DESCRIPTORS

TEST(GeneratedMessageTest, TestOptimizedForSize) {
  // We rely on the tests in reflection_ops_unittest and wire_format_unittest
  // to really test that reflection-based methods work.  Here we are mostly
  // just making sure that TestOptimizedForSize actually builds and seems to
  // function.

  protobuf_unittest::TestOptimizedForSize message, message2;
  message.set_i(1);
  message.mutable_msg()->set_c(2);
  message2.CopyFrom(message);
  EXPECT_EQ(1, message2.i());
  EXPECT_EQ(2, message2.msg().c());
}

TEST(GeneratedMessageTest, TestEmbedOptimizedForSize) {
  // Verifies that something optimized for speed can contain something optimized
  // for size.

  protobuf_unittest::TestEmbedOptimizedForSize message, message2;
  message.mutable_optional_message()->set_i(1);
  message.add_repeated_message()->mutable_msg()->set_c(2);
  string data;
  message.SerializeToString(&data);
  ASSERT_TRUE(message2.ParseFromString(data));
  EXPECT_EQ(1, message2.optional_message().i());
  EXPECT_EQ(2, message2.repeated_message(0).msg().c());
}

TEST(GeneratedMessageTest, TestSpaceUsed) {
  unittest::TestAllTypes message1;
  // sizeof provides a lower bound on SpaceUsed().
  EXPECT_LE(sizeof(unittest::TestAllTypes), message1.SpaceUsed());
  const int empty_message_size = message1.SpaceUsed();

  // Setting primitive types shouldn't affect the space used.
  message1.set_optional_int32(123);
  message1.set_optional_int64(12345);
  message1.set_optional_uint32(123);
  message1.set_optional_uint64(12345);
  EXPECT_EQ(empty_message_size, message1.SpaceUsed());

  // On some STL implementations, setting the string to a small value should
  // only increase SpaceUsed() by the size of a string object, though this is
  // not true everywhere.
  message1.set_optional_string("abc");
  EXPECT_LE(empty_message_size + sizeof(string), message1.SpaceUsed());

  // Setting a string to a value larger than the string object itself should
  // increase SpaceUsed(), because it cannot store the value internally.
  message1.set_optional_string(string(sizeof(string) + 1, 'x'));
  int min_expected_increase = message1.optional_string().capacity() +
      sizeof(string);
  EXPECT_LE(empty_message_size + min_expected_increase,
            message1.SpaceUsed());

  int previous_size = message1.SpaceUsed();
  // Adding an optional message should increase the size by the size of the
  // nested message type. NestedMessage is simple enough (1 int field) that it
  // is equal to sizeof(NestedMessage)
  message1.mutable_optional_nested_message();
  ASSERT_EQ(sizeof(unittest::TestAllTypes::NestedMessage),
            message1.optional_nested_message().SpaceUsed());
  EXPECT_EQ(previous_size +
            sizeof(unittest::TestAllTypes::NestedMessage),
            message1.SpaceUsed());
}

#endif  // !PROTOBUF_TEST_NO_DESCRIPTORS


TEST(GeneratedMessageTest, FieldConstantValues) {
  unittest::TestRequired message;
  EXPECT_EQ(unittest::TestAllTypes_NestedMessage::kBbFieldNumber, 1);
  EXPECT_EQ(unittest::TestAllTypes::kOptionalInt32FieldNumber, 1);
  EXPECT_EQ(unittest::TestAllTypes::kOptionalgroupFieldNumber, 16);
  EXPECT_EQ(unittest::TestAllTypes::kOptionalNestedMessageFieldNumber, 18);
  EXPECT_EQ(unittest::TestAllTypes::kOptionalNestedEnumFieldNumber, 21);
  EXPECT_EQ(unittest::TestAllTypes::kRepeatedInt32FieldNumber, 31);
  EXPECT_EQ(unittest::TestAllTypes::kRepeatedgroupFieldNumber, 46);
  EXPECT_EQ(unittest::TestAllTypes::kRepeatedNestedMessageFieldNumber, 48);
  EXPECT_EQ(unittest::TestAllTypes::kRepeatedNestedEnumFieldNumber, 51);
}

TEST(GeneratedMessageTest, ExtensionConstantValues) {
  EXPECT_EQ(unittest::TestRequired::kSingleFieldNumber, 1000);
  EXPECT_EQ(unittest::TestRequired::kMultiFieldNumber, 1001);
  EXPECT_EQ(unittest::kOptionalInt32ExtensionFieldNumber, 1);
  EXPECT_EQ(unittest::kOptionalgroupExtensionFieldNumber, 16);
  EXPECT_EQ(unittest::kOptionalNestedMessageExtensionFieldNumber, 18);
  EXPECT_EQ(unittest::kOptionalNestedEnumExtensionFieldNumber, 21);
  EXPECT_EQ(unittest::kRepeatedInt32ExtensionFieldNumber, 31);
  EXPECT_EQ(unittest::kRepeatedgroupExtensionFieldNumber, 46);
  EXPECT_EQ(unittest::kRepeatedNestedMessageExtensionFieldNumber, 48);
  EXPECT_EQ(unittest::kRepeatedNestedEnumExtensionFieldNumber, 51);
}

// ===================================================================

TEST(GeneratedEnumTest, EnumValuesAsSwitchCases) {
  // Test that our nested enum values can be used as switch cases.  This test
  // doesn't actually do anything, the proof that it works is that it
  // compiles.
  int i =0;
  unittest::TestAllTypes::NestedEnum a = unittest::TestAllTypes::BAR;
  switch (a) {
    case unittest::TestAllTypes::FOO:
      i = 1;
      break;
    case unittest::TestAllTypes::BAR:
      i = 2;
      break;
    case unittest::TestAllTypes::BAZ:
      i = 3;
      break;
    // no default case:  We want to make sure the compiler recognizes that
    //   all cases are covered.  (GCC warns if you do not cover all cases of
    //   an enum in a switch.)
  }

  // Token check just for fun.
  EXPECT_EQ(2, i);
}

TEST(GeneratedEnumTest, IsValidValue) {
  // Test enum IsValidValue.
  EXPECT_TRUE(unittest::TestAllTypes::NestedEnum_IsValid(1));
  EXPECT_TRUE(unittest::TestAllTypes::NestedEnum_IsValid(2));
  EXPECT_TRUE(unittest::TestAllTypes::NestedEnum_IsValid(3));

  EXPECT_FALSE(unittest::TestAllTypes::NestedEnum_IsValid(0));
  EXPECT_FALSE(unittest::TestAllTypes::NestedEnum_IsValid(4));

  // Make sure it also works when there are dups.
  EXPECT_TRUE(unittest::TestEnumWithDupValue_IsValid(1));
  EXPECT_TRUE(unittest::TestEnumWithDupValue_IsValid(2));
  EXPECT_TRUE(unittest::TestEnumWithDupValue_IsValid(3));

  EXPECT_FALSE(unittest::TestEnumWithDupValue_IsValid(0));
  EXPECT_FALSE(unittest::TestEnumWithDupValue_IsValid(4));
}

TEST(GeneratedEnumTest, MinAndMax) {
  EXPECT_EQ(unittest::TestAllTypes::FOO,
            unittest::TestAllTypes::NestedEnum_MIN);
  EXPECT_EQ(unittest::TestAllTypes::BAZ,
            unittest::TestAllTypes::NestedEnum_MAX);
  EXPECT_EQ(4, unittest::TestAllTypes::NestedEnum_ARRAYSIZE);

  EXPECT_EQ(unittest::FOREIGN_FOO, unittest::ForeignEnum_MIN);
  EXPECT_EQ(unittest::FOREIGN_BAZ, unittest::ForeignEnum_MAX);
  EXPECT_EQ(7, unittest::ForeignEnum_ARRAYSIZE);

  EXPECT_EQ(1, unittest::TestEnumWithDupValue_MIN);
  EXPECT_EQ(3, unittest::TestEnumWithDupValue_MAX);
  EXPECT_EQ(4, unittest::TestEnumWithDupValue_ARRAYSIZE);

  EXPECT_EQ(unittest::SPARSE_E, unittest::TestSparseEnum_MIN);
  EXPECT_EQ(unittest::SPARSE_C, unittest::TestSparseEnum_MAX);
  EXPECT_EQ(12589235, unittest::TestSparseEnum_ARRAYSIZE);

  // Make sure we can take the address of _MIN, _MAX and _ARRAYSIZE.
  void* null_pointer = 0;  // NULL may be integer-type, not pointer-type.
  EXPECT_NE(null_pointer, &unittest::TestAllTypes::NestedEnum_MIN);
  EXPECT_NE(null_pointer, &unittest::TestAllTypes::NestedEnum_MAX);
  EXPECT_NE(null_pointer, &unittest::TestAllTypes::NestedEnum_ARRAYSIZE);

  EXPECT_NE(null_pointer, &unittest::ForeignEnum_MIN);
  EXPECT_NE(null_pointer, &unittest::ForeignEnum_MAX);
  EXPECT_NE(null_pointer, &unittest::ForeignEnum_ARRAYSIZE);

  // Make sure we can use _MIN and _MAX as switch cases.
  switch (unittest::SPARSE_A) {
    case unittest::TestSparseEnum_MIN:
    case unittest::TestSparseEnum_MAX:
      break;
    default:
      break;
  }
}

#ifndef PROTOBUF_TEST_NO_DESCRIPTORS

TEST(GeneratedEnumTest, Name) {
  // "Names" in the presence of dup values are a bit arbitrary.
  EXPECT_EQ("FOO1", unittest::TestEnumWithDupValue_Name(unittest::FOO1));
  EXPECT_EQ("FOO1", unittest::TestEnumWithDupValue_Name(unittest::FOO2));

  EXPECT_EQ("SPARSE_A", unittest::TestSparseEnum_Name(unittest::SPARSE_A));
  EXPECT_EQ("SPARSE_B", unittest::TestSparseEnum_Name(unittest::SPARSE_B));
  EXPECT_EQ("SPARSE_C", unittest::TestSparseEnum_Name(unittest::SPARSE_C));
  EXPECT_EQ("SPARSE_D", unittest::TestSparseEnum_Name(unittest::SPARSE_D));
  EXPECT_EQ("SPARSE_E", unittest::TestSparseEnum_Name(unittest::SPARSE_E));
  EXPECT_EQ("SPARSE_F", unittest::TestSparseEnum_Name(unittest::SPARSE_F));
  EXPECT_EQ("SPARSE_G", unittest::TestSparseEnum_Name(unittest::SPARSE_G));
}

TEST(GeneratedEnumTest, Parse) {
  unittest::TestEnumWithDupValue dup_value = unittest::FOO1;
  EXPECT_TRUE(unittest::TestEnumWithDupValue_Parse("FOO1", &dup_value));
  EXPECT_EQ(unittest::FOO1, dup_value);
  EXPECT_TRUE(unittest::TestEnumWithDupValue_Parse("FOO2", &dup_value));
  EXPECT_EQ(unittest::FOO2, dup_value);
  EXPECT_FALSE(unittest::TestEnumWithDupValue_Parse("FOO", &dup_value));
}

TEST(GeneratedEnumTest, GetEnumDescriptor) {
  EXPECT_EQ(unittest::TestAllTypes::NestedEnum_descriptor(),
            GetEnumDescriptor<unittest::TestAllTypes::NestedEnum>());
  EXPECT_EQ(unittest::ForeignEnum_descriptor(),
            GetEnumDescriptor<unittest::ForeignEnum>());
  EXPECT_EQ(unittest::TestEnumWithDupValue_descriptor(),
            GetEnumDescriptor<unittest::TestEnumWithDupValue>());
  EXPECT_EQ(unittest::TestSparseEnum_descriptor(),
            GetEnumDescriptor<unittest::TestSparseEnum>());
}

#endif  // PROTOBUF_TEST_NO_DESCRIPTORS

// ===================================================================

#ifndef PROTOBUF_TEST_NO_DESCRIPTORS

// Support code for testing services.
class GeneratedServiceTest : public testing::Test {
 protected:
  class MockTestService : public unittest::TestService {
   public:
    MockTestService()
      : called_(false),
        method_(""),
        controller_(NULL),
        request_(NULL),
        response_(NULL),
        done_(NULL) {}

    ~MockTestService() {}

    void Reset() { called_ = false; }

    // implements TestService ----------------------------------------

    void Foo(RpcController* controller,
             const unittest::FooRequest* request,
             unittest::FooResponse* response,
             Closure* done) {
      ASSERT_FALSE(called_);
      called_ = true;
      method_ = "Foo";
      controller_ = controller;
      request_ = request;
      response_ = response;
      done_ = done;
    }

    void Bar(RpcController* controller,
             const unittest::BarRequest* request,
             unittest::BarResponse* response,
             Closure* done) {
      ASSERT_FALSE(called_);
      called_ = true;
      method_ = "Bar";
      controller_ = controller;
      request_ = request;
      response_ = response;
      done_ = done;
    }

    // ---------------------------------------------------------------

    bool called_;
    string method_;
    RpcController* controller_;
    const Message* request_;
    Message* response_;
    Closure* done_;
  };

  class MockRpcChannel : public RpcChannel {
   public:
    MockRpcChannel()
      : called_(false),
        method_(NULL),
        controller_(NULL),
        request_(NULL),
        response_(NULL),
        done_(NULL),
        destroyed_(NULL) {}

    ~MockRpcChannel() {
      if (destroyed_ != NULL) *destroyed_ = true;
    }

    void Reset() { called_ = false; }

    // implements TestService ----------------------------------------

    void CallMethod(const MethodDescriptor* method,
                    RpcController* controller,
                    const Message* request,
                    Message* response,
                    Closure* done) {
      ASSERT_FALSE(called_);
      called_ = true;
      method_ = method;
      controller_ = controller;
      request_ = request;
      response_ = response;
      done_ = done;
    }

    // ---------------------------------------------------------------

    bool called_;
    const MethodDescriptor* method_;
    RpcController* controller_;
    const Message* request_;
    Message* response_;
    Closure* done_;
    bool* destroyed_;
  };

  class MockController : public RpcController {
   public:
    void Reset() {
      ADD_FAILURE() << "Reset() not expected during this test.";
    }
    bool Failed() const {
      ADD_FAILURE() << "Failed() not expected during this test.";
      return false;
    }
    string ErrorText() const {
      ADD_FAILURE() << "ErrorText() not expected during this test.";
      return "";
    }
    void StartCancel() {
      ADD_FAILURE() << "StartCancel() not expected during this test.";
    }
    void SetFailed(const string& reason) {
      ADD_FAILURE() << "SetFailed() not expected during this test.";
    }
    bool IsCanceled() const {
      ADD_FAILURE() << "IsCanceled() not expected during this test.";
      return false;
    }
    void NotifyOnCancel(Closure* callback) {
      ADD_FAILURE() << "NotifyOnCancel() not expected during this test.";
    }
  };

  GeneratedServiceTest()
    : descriptor_(unittest::TestService::descriptor()),
      foo_(descriptor_->FindMethodByName("Foo")),
      bar_(descriptor_->FindMethodByName("Bar")),
      stub_(&mock_channel_),
      done_(NewPermanentCallback(&DoNothing)) {}

  virtual void SetUp() {
    ASSERT_TRUE(foo_ != NULL);
    ASSERT_TRUE(bar_ != NULL);
  }

  const ServiceDescriptor* descriptor_;
  const MethodDescriptor* foo_;
  const MethodDescriptor* bar_;

  MockTestService mock_service_;
  MockController mock_controller_;

  MockRpcChannel mock_channel_;
  unittest::TestService::Stub stub_;

  // Just so we don't have to re-define these with every test.
  unittest::FooRequest foo_request_;
  unittest::FooResponse foo_response_;
  unittest::BarRequest bar_request_;
  unittest::BarResponse bar_response_;
  scoped_ptr<Closure> done_;
};

TEST_F(GeneratedServiceTest, GetDescriptor) {
  // Test that GetDescriptor() works.

  EXPECT_EQ(descriptor_, mock_service_.GetDescriptor());
}

TEST_F(GeneratedServiceTest, GetChannel) {
  EXPECT_EQ(&mock_channel_, stub_.channel());
}

TEST_F(GeneratedServiceTest, OwnsChannel) {
  MockRpcChannel* channel = new MockRpcChannel;
  bool destroyed = false;
  channel->destroyed_ = &destroyed;

  {
    unittest::TestService::Stub owning_stub(channel,
                                            Service::STUB_OWNS_CHANNEL);
    EXPECT_FALSE(destroyed);
  }

  EXPECT_TRUE(destroyed);
}

TEST_F(GeneratedServiceTest, CallMethod) {
  // Test that CallMethod() works.

  // Call Foo() via CallMethod().
  mock_service_.CallMethod(foo_, &mock_controller_,
                           &foo_request_, &foo_response_, done_.get());

  ASSERT_TRUE(mock_service_.called_);

  EXPECT_EQ("Foo"            , mock_service_.method_    );
  EXPECT_EQ(&mock_controller_, mock_service_.controller_);
  EXPECT_EQ(&foo_request_    , mock_service_.request_   );
  EXPECT_EQ(&foo_response_   , mock_service_.response_  );
  EXPECT_EQ(done_.get()      , mock_service_.done_      );

  // Try again, but call Bar() instead.
  mock_service_.Reset();
  mock_service_.CallMethod(bar_, &mock_controller_,
                           &bar_request_, &bar_response_, done_.get());

  ASSERT_TRUE(mock_service_.called_);
  EXPECT_EQ("Bar", mock_service_.method_);
}

TEST_F(GeneratedServiceTest, CallMethodTypeFailure) {
  // Verify death if we call Foo() with Bar's message types.

#ifdef PROTOBUF_HAS_DEATH_TEST  // death tests do not work on Windows yet
  EXPECT_DEBUG_DEATH(
    mock_service_.CallMethod(foo_, &mock_controller_,
                             &foo_request_, &bar_response_, done_.get()),
    "dynamic_cast");

  mock_service_.Reset();
  EXPECT_DEBUG_DEATH(
    mock_service_.CallMethod(foo_, &mock_controller_,
                             &bar_request_, &foo_response_, done_.get()),
    "dynamic_cast");
#endif  // PROTOBUF_HAS_DEATH_TEST
}

TEST_F(GeneratedServiceTest, GetPrototypes) {
  // Test Get{Request,Response}Prototype() methods.

  EXPECT_EQ(&unittest::FooRequest::default_instance(),
            &mock_service_.GetRequestPrototype(foo_));
  EXPECT_EQ(&unittest::BarRequest::default_instance(),
            &mock_service_.GetRequestPrototype(bar_));

  EXPECT_EQ(&unittest::FooResponse::default_instance(),
            &mock_service_.GetResponsePrototype(foo_));
  EXPECT_EQ(&unittest::BarResponse::default_instance(),
            &mock_service_.GetResponsePrototype(bar_));
}

TEST_F(GeneratedServiceTest, Stub) {
  // Test that the stub class works.

  // Call Foo() via the stub.
  stub_.Foo(&mock_controller_, &foo_request_, &foo_response_, done_.get());

  ASSERT_TRUE(mock_channel_.called_);

  EXPECT_EQ(foo_             , mock_channel_.method_    );
  EXPECT_EQ(&mock_controller_, mock_channel_.controller_);
  EXPECT_EQ(&foo_request_    , mock_channel_.request_   );
  EXPECT_EQ(&foo_response_   , mock_channel_.response_  );
  EXPECT_EQ(done_.get()      , mock_channel_.done_      );

  // Call Bar() via the stub.
  mock_channel_.Reset();
  stub_.Bar(&mock_controller_, &bar_request_, &bar_response_, done_.get());

  ASSERT_TRUE(mock_channel_.called_);
  EXPECT_EQ(bar_, mock_channel_.method_);
}

TEST_F(GeneratedServiceTest, NotImplemented) {
  // Test that failing to implement a method of a service causes it to fail
  // with a "not implemented" error message.

  // A service which doesn't implement any methods.
  class UnimplementedService : public unittest::TestService {
   public:
    UnimplementedService() {}
  };

  UnimplementedService unimplemented_service;

  // And a controller which expects to get a "not implemented" error.
  class ExpectUnimplementedController : public MockController {
   public:
    ExpectUnimplementedController() : called_(false) {}

    void SetFailed(const string& reason) {
      EXPECT_FALSE(called_);
      called_ = true;
      EXPECT_EQ("Method Foo() not implemented.", reason);
    }

    bool called_;
  };

  ExpectUnimplementedController controller;

  // Call Foo.
  unimplemented_service.Foo(&controller, &foo_request_, &foo_response_,
                            done_.get());

  EXPECT_TRUE(controller.called_);
}

}  // namespace cpp_unittest
}  // namespace cpp
}  // namespace compiler

namespace no_generic_services_test {
  // Verify that no class called "TestService" was defined in
  // unittest_no_generic_services.pb.h by defining a different type by the same
  // name.  If such a service was generated, this will not compile.
  struct TestService {
    int i;
  };
}

namespace compiler {
namespace cpp {
namespace cpp_unittest {

TEST_F(GeneratedServiceTest, NoGenericServices) {
  // Verify that non-services in unittest_no_generic_services.proto were
  // generated.
  no_generic_services_test::TestMessage message;
  message.set_a(1);
  message.SetExtension(no_generic_services_test::test_extension, 123);
  no_generic_services_test::TestEnum e = no_generic_services_test::FOO;
  EXPECT_EQ(e, 1);

  // Verify that a ServiceDescriptor is generated for the service even if the
  // class itself is not.
  const FileDescriptor* file =
      no_generic_services_test::TestMessage::descriptor()->file();

  ASSERT_EQ(1, file->service_count());
  EXPECT_EQ("TestService", file->service(0)->name());
  ASSERT_EQ(1, file->service(0)->method_count());
  EXPECT_EQ("Foo", file->service(0)->method(0)->name());
}

#endif  // !PROTOBUF_TEST_NO_DESCRIPTORS

// ===================================================================

// This test must run last.  It verifies that descriptors were or were not
// initialized depending on whether PROTOBUF_TEST_NO_DESCRIPTORS was defined.
// When this is defined, we skip all tests which are expected to trigger
// descriptor initialization.  This verifies that everything else still works
// if descriptors are not initialized.
TEST(DescriptorInitializationTest, Initialized) {
#ifdef PROTOBUF_TEST_NO_DESCRIPTORS
  bool should_have_descriptors = false;
#else
  bool should_have_descriptors = true;
#endif

  EXPECT_EQ(should_have_descriptors,
    DescriptorPool::generated_pool()->InternalIsFileLoaded(
      "google/protobuf/unittest.proto"));
}

}  // namespace cpp_unittest

}  // namespace cpp
}  // namespace compiler
}  // namespace protobuf
}  // namespace google

/* [<][>][^][v][top][bottom][index][help] */