root/third_party/mach_override/mach_override.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. makeIslandExecutable
  2. mach_override_ptr
  3. allocateBranchIsland
  4. freeBranchIsland
  5. setBranchIslandTarget
  6. setBranchIslandTarget_i386
  7. setBranchIslandTarget_i386
  8. eatKnownInstructions
  9. fixupInstructions
  10. atomic_mov64

// mach_override.c semver:1.2.0
//   Copyright (c) 2003-2012 Jonathan 'Wolf' Rentzsch: http://rentzsch.com
//   Some rights reserved: http://opensource.org/licenses/mit
//   https://github.com/rentzsch/mach_override

#include "mach_override.h"
#if defined(__i386__) || defined(__x86_64__)
#include "udis86.h"
#endif

#include <mach-o/dyld.h>
#include <mach/mach_host.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <mach/vm_statistics.h>
#include <sys/mman.h>

#include <CoreServices/CoreServices.h>

/**************************
*       
*       Constants
*       
**************************/
#pragma mark    -
#pragma mark    (Constants)

#if defined(__ppc__) || defined(__POWERPC__)

long kIslandTemplate[] = {
        0x9001FFFC,     //      stw             r0,-4(SP)
        0x3C00DEAD,     //      lis             r0,0xDEAD
        0x6000BEEF,     //      ori             r0,r0,0xBEEF
        0x7C0903A6,     //      mtctr   r0
        0x8001FFFC,     //      lwz             r0,-4(SP)
        0x60000000,     //      nop             ; optionally replaced
        0x4E800420      //      bctr
};

#define kAddressHi                      3
#define kAddressLo                      5
#define kInstructionHi          10
#define kInstructionLo          11

#elif defined(__i386__) 

#define kOriginalInstructionsSize 16

char kIslandTemplate[] = {
        // kOriginalInstructionsSize nop instructions so that we 
        // should have enough space to host original instructions 
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
        // Now the real jump instruction
        0xE9, 0xEF, 0xBE, 0xAD, 0xDE
};

#define kInstructions   0
#define kJumpAddress    kInstructions + kOriginalInstructionsSize + 1
#elif defined(__x86_64__)

#define kOriginalInstructionsSize 32

#define kJumpAddress    kOriginalInstructionsSize + 6

char kIslandTemplate[] = {
        // kOriginalInstructionsSize nop instructions so that we 
        // should have enough space to host original instructions 
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 
        0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
        // Now the real jump instruction
        0xFF, 0x25, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00
};

#endif

#define kAllocateHigh           1
#define kAllocateNormal         0

/**************************
*       
*       Data Types
*       
**************************/
#pragma mark    -
#pragma mark    (Data Types)

typedef struct  {
        char    instructions[sizeof(kIslandTemplate)];
        int             allocatedHigh;
}       BranchIsland;

/**************************
*       
*       Funky Protos
*       
**************************/
#pragma mark    -
#pragma mark    (Funky Protos)

        mach_error_t
allocateBranchIsland(
                BranchIsland    **island,
                int                             allocateHigh,
                void *originalFunctionAddress);

        mach_error_t
freeBranchIsland(
                BranchIsland    *island );

#if defined(__ppc__) || defined(__POWERPC__)
        mach_error_t
setBranchIslandTarget(
                BranchIsland    *island,
                const void              *branchTo,
                long                    instruction );
#endif 

#if defined(__i386__) || defined(__x86_64__)
mach_error_t
setBranchIslandTarget_i386(
                                                   BranchIsland *island,
                                                   const void           *branchTo,
                                                   char*                        instructions );
void 
atomic_mov64(
                uint64_t *targetAddress,
                uint64_t value );

        static Boolean 
eatKnownInstructions( 
        unsigned char   *code, 
        uint64_t                *newInstruction,
        int                             *howManyEaten, 
        char                    *originalInstructions,
        int                             *originalInstructionCount, 
        uint8_t                 *originalInstructionSizes );

        static void
fixupInstructions(
    void                *originalFunction,
    void                *escapeIsland,
    void                *instructionsToFix,
        int                     instructionCount,
        uint8_t         *instructionSizes );
#endif

/*******************************************************************************
*       
*       Interface
*       
*******************************************************************************/
#pragma mark    -
#pragma mark    (Interface)

#if defined(__i386__) || defined(__x86_64__)
mach_error_t makeIslandExecutable(void *address) {
        mach_error_t err = err_none;
    vm_size_t pageSize;
    host_page_size( mach_host_self(), &pageSize );
    uintptr_t page = (uintptr_t)address & ~(uintptr_t)(pageSize-1);
    int e = err_none;
    e |= mprotect((void *)page, pageSize, PROT_EXEC | PROT_READ);
    e |= msync((void *)page, pageSize, MS_INVALIDATE );
    if (e) {
        err = err_cannot_override;
    }
    return err;
}
#endif

    mach_error_t
mach_override_ptr(
        void *originalFunctionAddress,
    const void *overrideFunctionAddress,
    void **originalFunctionReentryIsland )
{
        assert( originalFunctionAddress );
        assert( overrideFunctionAddress );
        
        // this addresses overriding such functions as AudioOutputUnitStart()
        // test with modified DefaultOutputUnit project
#if defined(__x86_64__)
    for(;;){
        if(*(uint16_t*)originalFunctionAddress==0x25FF)    // jmp qword near [rip+0x????????]
            originalFunctionAddress=*(void**)((char*)originalFunctionAddress+6+*(int32_t *)((uint16_t*)originalFunctionAddress+1));
        else break;
    }
#elif defined(__i386__)
    for(;;){
        if(*(uint16_t*)originalFunctionAddress==0x25FF)    // jmp *0x????????
            originalFunctionAddress=**(void***)((uint16_t*)originalFunctionAddress+1);
        else break;
    }
#endif

        long    *originalFunctionPtr = (long*) originalFunctionAddress;
        mach_error_t    err = err_none;
        
#if defined(__ppc__) || defined(__POWERPC__)
        //      Ensure first instruction isn't 'mfctr'.
        #define kMFCTRMask                      0xfc1fffff
        #define kMFCTRInstruction       0x7c0903a6
        
        long    originalInstruction = *originalFunctionPtr;
        if( !err && ((originalInstruction & kMFCTRMask) == kMFCTRInstruction) )
                err = err_cannot_override;
#elif defined(__i386__) || defined(__x86_64__)
        int eatenCount = 0;
        int originalInstructionCount = 0;
        char originalInstructions[kOriginalInstructionsSize];
        uint8_t originalInstructionSizes[kOriginalInstructionsSize];
        uint64_t jumpRelativeInstruction = 0; // JMP

        Boolean overridePossible = eatKnownInstructions ((unsigned char *)originalFunctionPtr, 
                                                                                &jumpRelativeInstruction, &eatenCount, 
                                                                                originalInstructions, &originalInstructionCount, 
                                                                                originalInstructionSizes );
        if (eatenCount > kOriginalInstructionsSize) {
                //printf ("Too many instructions eaten\n");
                overridePossible = false;
        }
        if (!overridePossible) err = err_cannot_override;
        if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);
#endif
        
        //      Make the original function implementation writable.
        if( !err ) {
                err = vm_protect( mach_task_self(),
                                (vm_address_t) originalFunctionPtr, 8, false,
                                (VM_PROT_ALL | VM_PROT_COPY) );
                if( err )
                        err = vm_protect( mach_task_self(),
                                        (vm_address_t) originalFunctionPtr, 8, false,
                                        (VM_PROT_DEFAULT | VM_PROT_COPY) );
        }
        if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);
        
        //      Allocate and target the escape island to the overriding function.
        BranchIsland    *escapeIsland = NULL;
        if( !err )      
                err = allocateBranchIsland( &escapeIsland, kAllocateHigh, originalFunctionAddress );
                if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);

        
#if defined(__ppc__) || defined(__POWERPC__)
        if( !err )
                err = setBranchIslandTarget( escapeIsland, overrideFunctionAddress, 0 );
        
        //      Build the branch absolute instruction to the escape island.
        long    branchAbsoluteInstruction = 0; // Set to 0 just to silence warning.
        if( !err ) {
                long escapeIslandAddress = ((long) escapeIsland) & 0x3FFFFFF;
                branchAbsoluteInstruction = 0x48000002 | escapeIslandAddress;
        }
#elif defined(__i386__) || defined(__x86_64__)
        if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);

        if( !err )
                err = setBranchIslandTarget_i386( escapeIsland, overrideFunctionAddress, 0 );
 
        if (err) fprintf(stderr, "err = %x %s:%d\n", err, __FILE__, __LINE__);
        // Build the jump relative instruction to the escape island
#endif


#if defined(__i386__) || defined(__x86_64__)
        if (!err) {
                uint32_t addressOffset = ((char*)escapeIsland - (char*)originalFunctionPtr - 5);
                addressOffset = OSSwapInt32(addressOffset);
                
                jumpRelativeInstruction |= 0xE900000000000000LL; 
                jumpRelativeInstruction |= ((uint64_t)addressOffset & 0xffffffff) << 24;
                jumpRelativeInstruction = OSSwapInt64(jumpRelativeInstruction);         
        }
#endif
        
        //      Optionally allocate & return the reentry island. This may contain relocated
        //  jmp instructions and so has all the same addressing reachability requirements
        //  the escape island has to the original function, except the escape island is
        //  technically our original function.
        BranchIsland    *reentryIsland = NULL;
        if( !err && originalFunctionReentryIsland ) {
                err = allocateBranchIsland( &reentryIsland, kAllocateHigh, escapeIsland);
                if( !err )
                        *originalFunctionReentryIsland = reentryIsland;
        }
        
#if defined(__ppc__) || defined(__POWERPC__)    
        //      Atomically:
        //      o If the reentry island was allocated:
        //              o Insert the original instruction into the reentry island.
        //              o Target the reentry island at the 2nd instruction of the
        //                original function.
        //      o Replace the original instruction with the branch absolute.
        if( !err ) {
                int escapeIslandEngaged = false;
                do {
                        if( reentryIsland )
                                err = setBranchIslandTarget( reentryIsland,
                                                (void*) (originalFunctionPtr+1), originalInstruction );
                        if( !err ) {
                                escapeIslandEngaged = CompareAndSwap( originalInstruction,
                                                                                branchAbsoluteInstruction,
                                                                                (UInt32*)originalFunctionPtr );
                                if( !escapeIslandEngaged ) {
                                        //      Someone replaced the instruction out from under us,
                                        //      re-read the instruction, make sure it's still not
                                        //      'mfctr' and try again.
                                        originalInstruction = *originalFunctionPtr;
                                        if( (originalInstruction & kMFCTRMask) == kMFCTRInstruction)
                                                err = err_cannot_override;
                                }
                        }
                } while( !err && !escapeIslandEngaged );
        }
#elif defined(__i386__) || defined(__x86_64__)
        // Atomically:
        //      o If the reentry island was allocated:
        //              o Insert the original instructions into the reentry island.
        //              o Target the reentry island at the first non-replaced 
        //        instruction of the original function.
        //      o Replace the original first instructions with the jump relative.
        //
        // Note that on i386, we do not support someone else changing the code under our feet
        if ( !err ) {
                fixupInstructions(originalFunctionPtr, reentryIsland, originalInstructions,
                                        originalInstructionCount, originalInstructionSizes );
        
                if( reentryIsland )
                        err = setBranchIslandTarget_i386( reentryIsland,
                                                                                 (void*) ((char *)originalFunctionPtr+eatenCount), originalInstructions );
                // try making islands executable before planting the jmp
#if defined(__x86_64__) || defined(__i386__)
        if( !err )
            err = makeIslandExecutable(escapeIsland);
        if( !err && reentryIsland )
            err = makeIslandExecutable(reentryIsland);
#endif
                if ( !err )
                        atomic_mov64((uint64_t *)originalFunctionPtr, jumpRelativeInstruction);

                mach_error_t prot_err = err_none;       
                prot_err = vm_protect( mach_task_self(),
                                       (vm_address_t) originalFunctionPtr, 8, false,
                                       (VM_PROT_READ | VM_PROT_EXECUTE) );
                if (prot_err) fprintf(stderr, "err = %x %s:%d\n", prot_err, __FILE__, __LINE__);    
        }
#endif
        
        //      Clean up on error.
        if( err ) {
                if( reentryIsland )
                        freeBranchIsland( reentryIsland );
                if( escapeIsland )
                        freeBranchIsland( escapeIsland );
        }

        return err;
}

/*******************************************************************************
*       
*       Implementation
*       
*******************************************************************************/
#pragma mark    -
#pragma mark    (Implementation)

/*******************************************************************************
        Implementation: Allocates memory for a branch island.
        
        @param  island                  <-      The allocated island.
        @param  allocateHigh    ->      Whether to allocate the island at the end of the
                                                                address space (for use with the branch absolute
                                                                instruction).
        @result                                 <-      mach_error_t

        ***************************************************************************/

        mach_error_t
allocateBranchIsland(
                BranchIsland    **island,
                int                             allocateHigh,
                void *originalFunctionAddress)
{
        assert( island );
        
        mach_error_t    err = err_none;
        
        if( allocateHigh ) {
                vm_size_t pageSize;
                err = host_page_size( mach_host_self(), &pageSize );
                if( !err ) {
                        assert( sizeof( BranchIsland ) <= pageSize );
#if defined(__i386__)
                        vm_address_t page = 0;
                        mach_error_t err = vm_allocate( mach_task_self(), &page, pageSize, VM_FLAGS_ANYWHERE );
                        if( err == err_none ) {
                                *island = (BranchIsland*) page;
                                return err_none;
                        }
                        return err;
#else

#if defined(__ppc__) || defined(__POWERPC__)
                        vm_address_t first = 0xfeffffff;
                        vm_address_t last = 0xfe000000 + pageSize;
#elif defined(__x86_64__)
                        vm_address_t first = ((uint64_t)originalFunctionAddress & ~(uint64_t)(((uint64_t)1 << 31) - 1)) | ((uint64_t)1 << 31); // start in the middle of the page?
                        vm_address_t last = 0x0;
#endif

                        vm_address_t page = first;
                        int allocated = 0;
                        vm_map_t task_self = mach_task_self();
                        
                        while( !err && !allocated && page != last ) {

                                err = vm_allocate( task_self, &page, pageSize, 0 );
                                if( err == err_none )
                                        allocated = 1;
                                else if( err == KERN_NO_SPACE ) {
#if defined(__x86_64__)
                                        page -= pageSize;
#else
                                        page += pageSize;
#endif
                                        err = err_none;
                                }
                        }
                        if( allocated )
                                *island = (BranchIsland*) page;
                        else if( !allocated && !err )
                                err = KERN_NO_SPACE;
#endif
                }
        } else {
                void *block = malloc( sizeof( BranchIsland ) );
                if( block )
                        *island = block;
                else
                        err = KERN_NO_SPACE;
        }
        if( !err )
                (**island).allocatedHigh = allocateHigh;
        
        return err;
}

/*******************************************************************************
        Implementation: Deallocates memory for a branch island.
        
        @param  island  ->      The island to deallocate.
        @result                 <-      mach_error_t

        ***************************************************************************/

        mach_error_t
freeBranchIsland(
                BranchIsland    *island )
{
        assert( island );
        assert( (*(long*)&island->instructions[0]) == kIslandTemplate[0] );
        assert( island->allocatedHigh );
        
        mach_error_t    err = err_none;
        
        if( island->allocatedHigh ) {
                vm_size_t pageSize;
                err = host_page_size( mach_host_self(), &pageSize );
                if( !err ) {
                        assert( sizeof( BranchIsland ) <= pageSize );
                        err = vm_deallocate(
                                        mach_task_self(),
                                        (vm_address_t) island, pageSize );
                }
        } else {
                free( island );
        }
        
        return err;
}

/*******************************************************************************
        Implementation: Sets the branch island's target, with an optional
        instruction.
        
        @param  island          ->      The branch island to insert target into.
        @param  branchTo        ->      The address of the target.
        @param  instruction     ->      Optional instruction to execute prior to branch. Set
                                                        to zero for nop.
        @result                         <-      mach_error_t

        ***************************************************************************/
#if defined(__ppc__) || defined(__POWERPC__)
        mach_error_t
setBranchIslandTarget(
                BranchIsland    *island,
                const void              *branchTo,
                long                    instruction )
{
        //      Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );
    
    //  Fill in the address.
    ((short*)island->instructions)[kAddressLo] = ((long) branchTo) & 0x0000FFFF;
    ((short*)island->instructions)[kAddressHi]
        = (((long) branchTo) >> 16) & 0x0000FFFF;
    
    //  Fill in the (optional) instuction.
    if( instruction != 0 ) {
        ((short*)island->instructions)[kInstructionLo]
                = instruction & 0x0000FFFF;
        ((short*)island->instructions)[kInstructionHi]
                = (instruction >> 16) & 0x0000FFFF;
    }
    
    //MakeDataExecutable( island->instructions, sizeof( kIslandTemplate ) );
        msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );
    
    return err_none;
}
#endif 

#if defined(__i386__)
        mach_error_t
setBranchIslandTarget_i386(
        BranchIsland    *island,
        const void              *branchTo,
        char*                   instructions )
{

        //      Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );

        // copy original instructions
        if (instructions) {
                bcopy (instructions, island->instructions + kInstructions, kOriginalInstructionsSize);
        }
        
    // Fill in the address.
    int32_t addressOffset = (char *)branchTo - (island->instructions + kJumpAddress + 4);
    *((int32_t *)(island->instructions + kJumpAddress)) = addressOffset; 

    msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );
    return err_none;
}

#elif defined(__x86_64__)
mach_error_t
setBranchIslandTarget_i386(
        BranchIsland    *island,
        const void              *branchTo,
        char*                   instructions )
{
    // Copy over the template code.
    bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) );

    // Copy original instructions.
    if (instructions) {
        bcopy (instructions, island->instructions, kOriginalInstructionsSize);
    }

    //  Fill in the address.
    *((uint64_t *)(island->instructions + kJumpAddress)) = (uint64_t)branchTo; 
    msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE );

    return err_none;
}
#endif


#if defined(__i386__) || defined(__x86_64__)
        static Boolean 
eatKnownInstructions( 
        unsigned char   *code, 
        uint64_t                *newInstruction,
        int                             *howManyEaten, 
        char                    *originalInstructions,
        int                             *originalInstructionCount, 
        uint8_t                 *originalInstructionSizes )
{
        Boolean allInstructionsKnown = true;
        int totalEaten = 0;
        int remainsToEat = 5; // a JMP instruction takes 5 bytes
        int instructionIndex = 0;
        ud_t ud_obj;
        
        if (howManyEaten) *howManyEaten = 0;
        if (originalInstructionCount) *originalInstructionCount = 0;
        ud_init(&ud_obj);
#if defined(__i386__)
        ud_set_mode(&ud_obj, 32);
#else
        ud_set_mode(&ud_obj, 64);
#endif
        ud_set_input_buffer(&ud_obj, code, 64); // Assume that 'code' points to at least 64bytes of data.
        while (remainsToEat > 0) {
                if (!ud_disassemble(&ud_obj)) {
                    allInstructionsKnown = false;
                    fprintf(stderr, "mach_override: some instructions unknown! Need to update libudis86\n");
                    break;
                }
                
                // At this point, we've matched curInstr
                int eaten = ud_insn_len(&ud_obj);
                remainsToEat -= eaten;
                totalEaten += eaten;
                
                if (originalInstructionSizes) originalInstructionSizes[instructionIndex] = eaten;
                instructionIndex += 1;
                if (originalInstructionCount) *originalInstructionCount = instructionIndex;
        }


        if (howManyEaten) *howManyEaten = totalEaten;

        if (originalInstructions) {
                Boolean enoughSpaceForOriginalInstructions = (totalEaten < kOriginalInstructionsSize);
                
                if (enoughSpaceForOriginalInstructions) {
                        memset(originalInstructions, 0x90 /* NOP */, kOriginalInstructionsSize); // fill instructions with NOP
                        bcopy(code, originalInstructions, totalEaten);
                } else {
                        // printf ("Not enough space in island to store original instructions. Adapt the island definition and kOriginalInstructionsSize\n");
                        return false;
                }
        }
        
        if (allInstructionsKnown) {
                // save last 3 bytes of first 64bits of codre we'll replace
                uint64_t currentFirst64BitsOfCode = *((uint64_t *)code);
                currentFirst64BitsOfCode = OSSwapInt64(currentFirst64BitsOfCode); // back to memory representation
                currentFirst64BitsOfCode &= 0x0000000000FFFFFFLL; 
                
                // keep only last 3 instructions bytes, first 5 will be replaced by JMP instr
                *newInstruction &= 0xFFFFFFFFFF000000LL; // clear last 3 bytes
                *newInstruction |= (currentFirst64BitsOfCode & 0x0000000000FFFFFFLL); // set last 3 bytes
        }

        return allInstructionsKnown;
}

        static void
fixupInstructions(
    void                *originalFunction,
    void                *escapeIsland,
    void                *instructionsToFix,
        int                     instructionCount,
        uint8_t         *instructionSizes )
{
        int     index;
        for (index = 0;index < instructionCount;index += 1)
        {
                if (*(uint8_t*)instructionsToFix == 0xE9) // 32-bit jump relative
                {
                        uint32_t offset = (uintptr_t)originalFunction - (uintptr_t)escapeIsland;
                        uint32_t *jumpOffsetPtr = (uint32_t*)((uintptr_t)instructionsToFix + 1);
                        *jumpOffsetPtr += offset;
                }
                
                originalFunction = (void*)((uintptr_t)originalFunction + instructionSizes[index]);
                escapeIsland = (void*)((uintptr_t)escapeIsland + instructionSizes[index]);
                instructionsToFix = (void*)((uintptr_t)instructionsToFix + instructionSizes[index]);
    }
}

#if defined(__i386__)
__asm(
                        ".text;"
                        ".align 2, 0x90;"
                        "_atomic_mov64:;"
                        "       pushl %ebp;"
                        "       movl %esp, %ebp;"
                        "       pushl %esi;"
                        "       pushl %ebx;"
                        "       pushl %ecx;"
                        "       pushl %eax;"
                        "       pushl %edx;"
        
                        // atomic push of value to an address
                        // we use cmpxchg8b, which compares content of an address with 
                        // edx:eax. If they are equal, it atomically puts 64bit value 
                        // ecx:ebx in address. 
                        // We thus put contents of address in edx:eax to force ecx:ebx
                        // in address
                        "       mov             8(%ebp), %esi;"  // esi contains target address
                        "       mov             12(%ebp), %ebx;"
                        "       mov             16(%ebp), %ecx;" // ecx:ebx now contains value to put in target address
                        "       mov             (%esi), %eax;"
                        "       mov             4(%esi), %edx;"  // edx:eax now contains value currently contained in target address
                        "       lock; cmpxchg8b (%esi);" // atomic move.
                        
                        // restore registers
                        "       popl %edx;"
                        "       popl %eax;"
                        "       popl %ecx;"
                        "       popl %ebx;"
                        "       popl %esi;"
                        "       popl %ebp;"
                        "       ret"
);
#elif defined(__x86_64__)
void atomic_mov64(
                uint64_t *targetAddress,
                uint64_t value )
{
    *targetAddress = value;
}
#endif
#endif

/* [<][>][^][v][top][bottom][index][help] */