root/third_party/tcmalloc/vendor/src/tests/heap-checker_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Run
  2. p1_
  3. Run
  4. p2_
  5. Run
  6. NewCallback
  7. NewCallback
  8. NewCallback
  9. WipeStack
  10. Pause
  11. Use
  12. Hide
  13. UnHide
  14. LogHidden
  15. DoRunHidden
  16. DoWipeStack
  17. RunHidden
  18. DoAllocHidden
  19. AllocHidden
  20. DoDeAllocHidden
  21. DeAllocHidden
  22. PreventHeapReclaiming
  23. RunSilent
  24. VerifyLeaks
  25. TestHeapLeakCheckerDeathSimple
  26. MakeDeathLoop
  27. TestHeapLeakCheckerDeathLoop
  28. TestHeapLeakCheckerDeathInverse
  29. TestHeapLeakCheckerDeathNoLeaks
  30. TestHeapLeakCheckerDeathCountLess
  31. TestHeapLeakCheckerDeathCountMore
  32. TestHiddenPointer
  33. TestHeapLeakChecker
  34. TestHeapLeakCheckerNoFalsePositives
  35. TestLeakButTotalsMatch
  36. TestHeapLeakCheckerDeathTrick
  37. TransLeaks
  38. ScopedDisabledLeaks
  39. RunDisabledLeaks
  40. ThreadDisabledLeaks
  41. TestHeapLeakCheckerDisabling
  42. DoTestSTLAlloc
  43. TestSTLAlloc
  44. DoTestSTLAllocInverse
  45. FreeTestSTLAllocInverse
  46. TestSTLAllocInverse
  47. DirectTestSTLAlloc
  48. KeyFree
  49. KeyInit
  50. TestLibCAllocate
  51. HeapBusyThreadBody
  52. RunHeapBusyThreads
  53. TestPointerReach
  54. TestObjMakers
  55. REGISTER_OBJ_MAKER
  56. f
  57. f2
  58. f
  59. f2
  60. f
  61. f2
  62. f
  63. A
  64. B
  65. C
  66. f
  67. A
  68. B
  69. REGISTER_OBJ_MAKER
  70. TestHeapLeakCheckerLiveness
  71. Mmapper
  72. VerifyMemoryRegionMapStackGet
  73. Mallocer
  74. VerifyHeapProfileTableStackGet
  75. MakeALeak
  76. Pass
  77. main

// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Maxim Lifantsev
//
// Running:
// ./heap-checker_unittest
//
// If the unittest crashes because it can't find pprof, try:
// PPROF_PATH=/usr/local/someplace/bin/pprof ./heap-checker_unittest
//
// To test that the whole-program heap checker will actually cause a leak, try:
// HEAPCHECK_TEST_LEAK= ./heap-checker_unittest
// HEAPCHECK_TEST_LOOP_LEAK= ./heap-checker_unittest
//
// Note: Both of the above commands *should* abort with an error message.

// CAVEAT: Do not use vector<> and string on-heap objects in this test,
// otherwise the test can sometimes fail for tricky leak checks
// when we want some allocated object not to be found live by the heap checker.
// This can happen with memory allocators like tcmalloc that can allocate
// heap objects back to back without any book-keeping data in between.
// What happens is that end-of-storage pointers of a live vector
// (or a string depending on the STL implementation used)
// can happen to point to that other heap-allocated
// object that is not reachable otherwise and that
// we don't want to be reachable.
//
// The implication of this for real leak checking
// is just one more chance for the liveness flood to be inexact
// (see the comment in our .h file).

#include "config_for_unittests.h"
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#if defined HAVE_STDINT_H
#include <stdint.h>             // to get uint16_t (ISO naming madness)
#elif defined HAVE_INTTYPES_H
#include <inttypes.h>           // another place uint16_t might be defined
#endif
#include <sys/types.h>
#include <stdlib.h>
#include <errno.h>              // errno
#ifdef HAVE_UNISTD_H
#include <unistd.h>             // for sleep(), geteuid()
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
#include <fcntl.h>              // for open(), close()
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>           // backtrace
#endif
#ifdef HAVE_GRP_H
#include <grp.h>                // getgrent, getgrnam
#endif
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif

#include <algorithm>
#include <iostream>             // for cout
#include <iomanip>              // for hex
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

#include "base/commandlineflags.h"
#include "base/googleinit.h"
#include "base/logging.h"
#include "base/commandlineflags.h"
#include "base/thread_lister.h"
#include <gperftools/heap-checker.h>
#include "memory_region_map.h"
#include <gperftools/malloc_extension.h>
#include <gperftools/stacktrace.h>

// On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
// form of the name instead.
#ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS MAP_ANON
#endif

using namespace std;

// ========================================================================= //

// TODO(maxim): write a shell script to test that these indeed crash us
//              (i.e. we do detect leaks)
//              Maybe add more such crash tests.

DEFINE_bool(test_leak,
            EnvToBool("HEAP_CHECKER_TEST_TEST_LEAK", false),
            "If should cause a leak crash");
DEFINE_bool(test_loop_leak,
            EnvToBool("HEAP_CHECKER_TEST_TEST_LOOP_LEAK", false),
            "If should cause a looped leak crash");
DEFINE_bool(test_register_leak,
            EnvToBool("HEAP_CHECKER_TEST_TEST_REGISTER_LEAK", false),
            "If should cause a leak crash by hiding a pointer "
            "that is only in a register");
DEFINE_bool(test_cancel_global_check,
            EnvToBool("HEAP_CHECKER_TEST_TEST_CANCEL_GLOBAL_CHECK", false),
            "If should test HeapLeakChecker::CancelGlobalCheck "
            "when --test_leak or --test_loop_leak are given; "
            "the test should not fail then");
DEFINE_bool(maybe_stripped,
            EnvToBool("HEAP_CHECKER_TEST_MAYBE_STRIPPED", true),
            "If we think we can be a stripped binary");
DEFINE_bool(interfering_threads,
            EnvToBool("HEAP_CHECKER_TEST_INTERFERING_THREADS", true),
            "If we should use threads trying "
            "to interfere with leak checking");
DEFINE_bool(hoarding_threads,
            EnvToBool("HEAP_CHECKER_TEST_HOARDING_THREADS", true),
            "If threads (usually the manager thread) are known "
            "to retain some old state in their global buffers, "
            "so that it's hard to force leaks when threads are around");
            // TODO(maxim): Chage the default to false
            // when the standard environment used NTPL threads:
            // they do not seem to have this problem.
DEFINE_bool(no_threads,
            EnvToBool("HEAP_CHECKER_TEST_NO_THREADS", false),
            "If we should not use any threads");
            // This is used so we can make can_create_leaks_reliably true
            // for any pthread implementation and test with that.

DECLARE_int64(heap_check_max_pointer_offset);   // heap-checker.cc
DECLARE_string(heap_check);  // in heap-checker.cc

#define WARN_IF(cond, msg)   LOG_IF(WARNING, cond, msg)

// This is an evil macro!  Be very careful using it...
#undef VLOG          // and we start by evilling overriding logging.h VLOG
#define VLOG(lvl)    if (FLAGS_verbose >= (lvl))  cout << "\n"
// This is, likewise, evil
#define LOGF         VLOG(INFO)

static void RunHeapBusyThreads();  // below


class Closure {
 public:
  virtual ~Closure() { }
  virtual void Run() = 0;
};

class Callback0 : public Closure {
 public:
  typedef void (*FunctionSignature)();

  inline Callback0(FunctionSignature f) : f_(f) {}
  virtual void Run() { (*f_)(); delete this; }

 private:
  FunctionSignature f_;
};

template <class P1> class Callback1 : public Closure {
 public:
  typedef void (*FunctionSignature)(P1);

  inline Callback1<P1>(FunctionSignature f, P1 p1) : f_(f), p1_(p1) {}
  virtual void Run() { (*f_)(p1_); delete this; }

 private:
  FunctionSignature f_;
  P1 p1_;
};

template <class P1, class P2> class Callback2 : public Closure {
 public:
  typedef void (*FunctionSignature)(P1,P2);

  inline Callback2<P1,P2>(FunctionSignature f, P1 p1, P2 p2) : f_(f), p1_(p1), p2_(p2) {}
  virtual void Run() { (*f_)(p1_, p2_); delete this; }

 private:
  FunctionSignature f_;
  P1 p1_;
  P2 p2_;
};

inline Callback0* NewCallback(void (*function)()) {
  return new Callback0(function);
}

template <class P1>
inline Callback1<P1>* NewCallback(void (*function)(P1), P1 p1) {
  return new Callback1<P1>(function, p1);
}

template <class P1, class P2>
inline Callback2<P1,P2>* NewCallback(void (*function)(P1,P2), P1 p1, P2 p2) {
  return new Callback2<P1,P2>(function, p1, p2);
}


// Set to true at end of main, so threads know.  Not entirely thread-safe!,
// but probably good enough.
static bool g_have_exited_main = false;

// If we can reliably create leaks (i.e. make leaked object
// really unreachable from any global data).
static bool can_create_leaks_reliably = false;

// We use a simple allocation wrapper
// to make sure we wipe out the newly allocated objects
// in case they still happened to contain some pointer data
// accidentally left by the memory allocator.
struct Initialized { };
static Initialized initialized;
void* operator new(size_t size, const Initialized&) {
  // Below we use "p = new(initialized) Foo[1];" and  "delete[] p;"
  // instead of "p = new(initialized) Foo;"
  // when we need to delete an allocated object.
  void* p = malloc(size);
  memset(p, 0, size);
  return p;
}
void* operator new[](size_t size, const Initialized&) {
  char* p = new char[size];
  memset(p, 0, size);
  return p;
}

static void DoWipeStack(int n);  // defined below
static void WipeStack() { DoWipeStack(20); }

static void Pause() {
  poll(NULL, 0, 77);  // time for thread activity in HeapBusyThreadBody

  // Indirectly test malloc_extension.*:
  CHECK(MallocExtension::instance()->VerifyAllMemory());
  int blocks;
  size_t total;
  int histogram[kMallocHistogramSize];
  if (MallocExtension::instance()
       ->MallocMemoryStats(&blocks, &total, histogram)  &&  total != 0) {
    VLOG(3) << "Malloc stats: " << blocks << " blocks of "
            << total << " bytes";
    for (int i = 0; i < kMallocHistogramSize; ++i) {
      if (histogram[i]) {
        VLOG(3) << "  Malloc histogram at " << i << " : " << histogram[i];
      }
    }
  }
  WipeStack();  // e.g. MallocExtension::VerifyAllMemory
                // can leave pointers to heap objects on stack
}

// Make gcc think a pointer is "used"
template <class T>
static void Use(T** foo) {
  VLOG(2) << "Dummy-using " << static_cast<void*>(*foo) << " at " << foo;
}

// Arbitrary value, but not such that xor'ing with it is likely
// to map one valid pointer to another valid pointer:
static const uintptr_t kHideMask =
  static_cast<uintptr_t>(0xF03A5F7BF03A5F7BLL);

// Helpers to hide a pointer from live data traversal.
// We just xor the pointer so that (with high probability)
// it's not a valid address of a heap object anymore.
// Both Hide and UnHide must be executed within RunHidden() below
// to prevent leaving stale data on active stack that can be a pointer
// to a heap object that is not actually reachable via live variables.
// (UnHide might leave heap pointer value for an object
//  that will be deallocated but later another object
//  can be allocated at the same heap address.)
template <class T>
static void Hide(T** ptr) {
  // we cast values, not dereferenced pointers, so no aliasing issues:
  *ptr = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(*ptr) ^ kHideMask);
  VLOG(2) << "hid: " << static_cast<void*>(*ptr);
}

template <class T>
static void UnHide(T** ptr) {
  VLOG(2) << "unhiding: " << static_cast<void*>(*ptr);
  // we cast values, not dereferenced pointers, so no aliasing issues:
  *ptr = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(*ptr) ^ kHideMask);
}

static void LogHidden(const char* message, const void* ptr) {
  LOGF << message << " : "
       << ptr << " ^ " << reinterpret_cast<void*>(kHideMask) << endl;
}

// volatile to fool the compiler against inlining the calls to these
void (*volatile run_hidden_ptr)(Closure* c, int n);
void (*volatile wipe_stack_ptr)(int n);

static void DoRunHidden(Closure* c, int n) {
  if (n) {
    VLOG(10) << "Level " << n << " at " << &n;
    (*run_hidden_ptr)(c, n-1);
    (*wipe_stack_ptr)(n);
    sleep(0);  // undo -foptimize-sibling-calls
  } else {
    c->Run();
  }
}

/*static*/ void DoWipeStack(int n) {
  VLOG(10) << "Wipe level " << n << " at " << &n;
  if (n) {
    const int sz = 30;
    volatile int arr[sz];
    for (int i = 0; i < sz; ++i) arr[i] = 0;
    (*wipe_stack_ptr)(n-1);
    sleep(0);  // undo -foptimize-sibling-calls
  }
}

// This executes closure c several stack frames down from the current one
// and then makes an effort to also wipe out the stack data that was used by
// the closure.
// This way we prevent leak checker from finding any temporary pointers
// of the closure execution on the stack and deciding that
// these pointers (and the pointed objects) are still live.
static void RunHidden(Closure* c) {
  DoRunHidden(c, 15);
  DoWipeStack(20);
}

static void DoAllocHidden(size_t size, void** ptr) {
  void* p = new(initialized) char[size];
  Hide(&p);
  Use(&p);  // use only hidden versions
  VLOG(2) << "Allocated hidden " << p << " at " << &p;
  *ptr = p;  // assign the hidden versions
}

static void* AllocHidden(size_t size) {
  void* r;
  RunHidden(NewCallback(DoAllocHidden, size, &r));
  return r;
}

static void DoDeAllocHidden(void** ptr) {
  Use(ptr);  // use only hidden versions
  void* p = *ptr;
  VLOG(2) << "Deallocating hidden " << p;
  UnHide(&p);
  delete [] reinterpret_cast<char*>(p);
}

static void DeAllocHidden(void** ptr) {
  RunHidden(NewCallback(DoDeAllocHidden, ptr));
  *ptr = NULL;
  Use(ptr);
}

void PreventHeapReclaiming(size_t size) {
#ifdef NDEBUG
  if (true) {
    static void** no_reclaim_list = NULL;
    CHECK(size >= sizeof(void*));
    // We can't use malloc_reclaim_memory flag in opt mode as debugallocation.cc
    // is not used. Instead we allocate a bunch of heap objects that are
    // of the same size as what we are going to leak to ensure that the object
    // we are about to leak is not at the same address as some old allocated
    // and freed object that might still have pointers leading to it.
    for (int i = 0; i < 100; ++i) {
      void** p = reinterpret_cast<void**>(new(initialized) char[size]);
      p[0] = no_reclaim_list;
      no_reclaim_list = p;
    }
  }
#endif
}

static bool RunSilent(HeapLeakChecker* check,
                      bool (HeapLeakChecker::* func)()) {
  // By default, don't print the 'we detected a leak' message in the
  // cases we're expecting a leak (we still print when --v is >= 1).
  // This way, the logging output is less confusing: we only print
  // "we detected a leak", and how to diagnose it, for *unexpected* leaks.
  int32 old_FLAGS_verbose = FLAGS_verbose;
  if (!VLOG_IS_ON(1))             // not on a verbose setting
    FLAGS_verbose = FATAL;        // only log fatal errors
  const bool retval = (check->*func)();
  FLAGS_verbose = old_FLAGS_verbose;
  return retval;
}

#define RUN_SILENT(check, func)  RunSilent(&(check), &HeapLeakChecker::func)

enum CheckType { SAME_HEAP, NO_LEAKS };

static void VerifyLeaks(HeapLeakChecker* check, CheckType type,
                        int leaked_bytes, int leaked_objects) {
  WipeStack();  // to help with can_create_leaks_reliably
  const bool no_leaks =
    type == NO_LEAKS ? RUN_SILENT(*check, BriefNoLeaks)
                     : RUN_SILENT(*check, BriefSameHeap);
  if (can_create_leaks_reliably) {
    // these might still fail occasionally, but it should be very rare
    CHECK_EQ(no_leaks, false);
    CHECK_EQ(check->BytesLeaked(), leaked_bytes);
    CHECK_EQ(check->ObjectsLeaked(), leaked_objects);
  } else {
    WARN_IF(no_leaks != false,
            "Expected leaks not found: "
            "Some liveness flood must be too optimistic");
  }
}

// not deallocates
static void TestHeapLeakCheckerDeathSimple() {
  HeapLeakChecker check("death_simple");
  void* foo = AllocHidden(100 * sizeof(int));
  Use(&foo);
  void* bar = AllocHidden(300);
  Use(&bar);
  LogHidden("Leaking", foo);
  LogHidden("Leaking", bar);
  Pause();
  VerifyLeaks(&check, NO_LEAKS, 300 + 100 * sizeof(int), 2);
  DeAllocHidden(&foo);
  DeAllocHidden(&bar);
}

static void MakeDeathLoop(void** arr1, void** arr2) {
  PreventHeapReclaiming(2 * sizeof(void*));
  void** a1 = new(initialized) void*[2];
  void** a2 = new(initialized) void*[2];
  a1[1] = reinterpret_cast<void*>(a2);
  a2[1] = reinterpret_cast<void*>(a1);
  Hide(&a1);
  Hide(&a2);
  Use(&a1);
  Use(&a2);
  VLOG(2) << "Made hidden loop at " << &a1 << " to " << arr1;
  *arr1 = a1;
  *arr2 = a2;
}

// not deallocates two objects linked together
static void TestHeapLeakCheckerDeathLoop() {
  HeapLeakChecker check("death_loop");
  void* arr1;
  void* arr2;
  RunHidden(NewCallback(MakeDeathLoop, &arr1, &arr2));
  Use(&arr1);
  Use(&arr2);
  LogHidden("Leaking", arr1);
  LogHidden("Leaking", arr2);
  Pause();
  VerifyLeaks(&check, NO_LEAKS, 4 * sizeof(void*), 2);
  DeAllocHidden(&arr1);
  DeAllocHidden(&arr2);
}

// deallocates more than allocates
static void TestHeapLeakCheckerDeathInverse() {
  void* bar = AllocHidden(250 * sizeof(int));
  Use(&bar);
  LogHidden("Pre leaking", bar);
  Pause();
  HeapLeakChecker check("death_inverse");
  void* foo = AllocHidden(100 * sizeof(int));
  Use(&foo);
  LogHidden("Leaking", foo);
  DeAllocHidden(&bar);
  Pause();
  VerifyLeaks(&check, SAME_HEAP,
              100 * static_cast<int64>(sizeof(int)),
              1);
  DeAllocHidden(&foo);
}

// deallocates more than allocates
static void TestHeapLeakCheckerDeathNoLeaks() {
  void* foo = AllocHidden(100 * sizeof(int));
  Use(&foo);
  void* bar = AllocHidden(250 * sizeof(int));
  Use(&bar);
  HeapLeakChecker check("death_noleaks");
  DeAllocHidden(&bar);
  CHECK_EQ(check.BriefNoLeaks(), true);
  DeAllocHidden(&foo);
}

// have less objecs
static void TestHeapLeakCheckerDeathCountLess() {
  void* bar1 = AllocHidden(50 * sizeof(int));
  Use(&bar1);
  void* bar2 = AllocHidden(50 * sizeof(int));
  Use(&bar2);
  LogHidden("Pre leaking", bar1);
  LogHidden("Pre leaking", bar2);
  Pause();
  HeapLeakChecker check("death_count_less");
  void* foo = AllocHidden(100 * sizeof(int));
  Use(&foo);
  LogHidden("Leaking", foo);
  DeAllocHidden(&bar1);
  DeAllocHidden(&bar2);
  Pause();
  VerifyLeaks(&check, SAME_HEAP,
              100 * sizeof(int),
              1);
  DeAllocHidden(&foo);
}

// have more objecs
static void TestHeapLeakCheckerDeathCountMore() {
  void* foo = AllocHidden(100 * sizeof(int));
  Use(&foo);
  LogHidden("Pre leaking", foo);
  Pause();
  HeapLeakChecker check("death_count_more");
  void* bar1 = AllocHidden(50 * sizeof(int));
  Use(&bar1);
  void* bar2 = AllocHidden(50 * sizeof(int));
  Use(&bar2);
  LogHidden("Leaking", bar1);
  LogHidden("Leaking", bar2);
  DeAllocHidden(&foo);
  Pause();
  VerifyLeaks(&check, SAME_HEAP,
              100 * sizeof(int),
              2);
  DeAllocHidden(&bar1);
  DeAllocHidden(&bar2);
}

static void TestHiddenPointer() {
  int i;
  void* foo = &i;
  HiddenPointer<void> p(foo);
  CHECK_EQ(foo, p.get());

  // Confirm pointer doesn't appear to contain a byte sequence
  // that == the pointer.  We don't really need to test that
  // the xor trick itself works, as without it nothing in this
  // test suite would work.  See the Hide/Unhide/*Hidden* set
  // of helper methods.
  CHECK_NE(foo, *reinterpret_cast<void**>(&p));
}

// simple tests that deallocate what they allocated
static void TestHeapLeakChecker() {
  { HeapLeakChecker check("trivial");
    int foo = 5;
    int* p = &foo;
    Use(&p);
    Pause();
    CHECK(check.BriefSameHeap());
  }
  Pause();
  { HeapLeakChecker check("simple");
    void* foo = AllocHidden(100 * sizeof(int));
    Use(&foo);
    void* bar = AllocHidden(200 * sizeof(int));
    Use(&bar);
    DeAllocHidden(&foo);
    DeAllocHidden(&bar);
    Pause();
    CHECK(check.BriefSameHeap());
  }
}

// no false positives
static void TestHeapLeakCheckerNoFalsePositives() {
  { HeapLeakChecker check("trivial_p");
    int foo = 5;
    int* p = &foo;
    Use(&p);
    Pause();
    CHECK(check.BriefSameHeap());
  }
  Pause();
  { HeapLeakChecker check("simple_p");
    void* foo = AllocHidden(100 * sizeof(int));
    Use(&foo);
    void* bar = AllocHidden(200 * sizeof(int));
    Use(&bar);
    DeAllocHidden(&foo);
    DeAllocHidden(&bar);
    Pause();
    CHECK(check.SameHeap());
  }
}

// test that we detect leaks when we have same total # of bytes and
// objects, but different individual object sizes
static void TestLeakButTotalsMatch() {
  void* bar1 = AllocHidden(240 * sizeof(int));
  Use(&bar1);
  void* bar2 = AllocHidden(160 * sizeof(int));
  Use(&bar2);
  LogHidden("Pre leaking", bar1);
  LogHidden("Pre leaking", bar2);
  Pause();
  HeapLeakChecker check("trick");
  void* foo1 = AllocHidden(280 * sizeof(int));
  Use(&foo1);
  void* foo2 = AllocHidden(120 * sizeof(int));
  Use(&foo2);
  LogHidden("Leaking", foo1);
  LogHidden("Leaking", foo2);
  DeAllocHidden(&bar1);
  DeAllocHidden(&bar2);
  Pause();

  // foo1 and foo2 leaked
  VerifyLeaks(&check, NO_LEAKS, (280+120)*sizeof(int), 2);

  DeAllocHidden(&foo1);
  DeAllocHidden(&foo2);
}

// no false negatives from pprof
static void TestHeapLeakCheckerDeathTrick() {
  void* bar1 = AllocHidden(240 * sizeof(int));
  Use(&bar1);
  void* bar2 = AllocHidden(160 * sizeof(int));
  Use(&bar2);
  HeapLeakChecker check("death_trick");
  DeAllocHidden(&bar1);
  DeAllocHidden(&bar2);
  void* foo1 = AllocHidden(280 * sizeof(int));
  Use(&foo1);
  void* foo2 = AllocHidden(120 * sizeof(int));
  Use(&foo2);
  // TODO(maxim): use the above if we make pprof work in automated test runs
  if (!FLAGS_maybe_stripped) {
    CHECK_EQ(RUN_SILENT(check, SameHeap), false);
      // pprof checking should catch the leak
  } else {
    WARN_IF(RUN_SILENT(check, SameHeap) != false,
            "death_trick leak is not caught; "
            "we must be using a stripped binary");
  }
  DeAllocHidden(&foo1);
  DeAllocHidden(&foo2);
}

// simple leak
static void TransLeaks() {
  AllocHidden(1 * sizeof(char));
}

// range-based disabling using Disabler
static void ScopedDisabledLeaks() {
  HeapLeakChecker::Disabler disabler;
  AllocHidden(3 * sizeof(int));
  TransLeaks();
  (void)malloc(10);  // Direct leak
}

// have different disabled leaks
static void* RunDisabledLeaks(void* a) {
  ScopedDisabledLeaks();
  return a;
}

// have different disabled leaks inside of a thread
static void ThreadDisabledLeaks() {
  if (FLAGS_no_threads)  return;
  pthread_t tid;
  pthread_attr_t attr;
  CHECK_EQ(pthread_attr_init(&attr), 0);
  CHECK_EQ(pthread_create(&tid, &attr, RunDisabledLeaks, NULL), 0);
  void* res;
  CHECK_EQ(pthread_join(tid, &res), 0);
}

// different disabled leaks (some in threads)
static void TestHeapLeakCheckerDisabling() {
  HeapLeakChecker check("disabling");

  RunDisabledLeaks(NULL);
  RunDisabledLeaks(NULL);
  ThreadDisabledLeaks();
  RunDisabledLeaks(NULL);
  ThreadDisabledLeaks();
  ThreadDisabledLeaks();

  Pause();

  CHECK(check.SameHeap());
}

typedef set<int> IntSet;

static int some_ints[] = { 1, 2, 3, 21, 22, 23, 24, 25 };

static void DoTestSTLAlloc() {
  IntSet* x = new(initialized) IntSet[1];
  *x = IntSet(some_ints, some_ints + 6);
  for (int i = 0; i < 1000; i++) {
    x->insert(i*3);
  }
  delete [] x;
}

// Check that normal STL usage does not result in a leak report.
// (In particular we test that there's no complex STL's own allocator
// running on top of our allocator with hooks to heap profiler
// that can result in false leak report in this case.)
static void TestSTLAlloc() {
  HeapLeakChecker check("stl");
  RunHidden(NewCallback(DoTestSTLAlloc));
  CHECK_EQ(check.BriefSameHeap(), true);
}

static void DoTestSTLAllocInverse(IntSet** setx) {
  IntSet* x = new(initialized) IntSet[1];
  *x = IntSet(some_ints, some_ints + 3);
  for (int i = 0; i < 100; i++) {
    x->insert(i*2);
  }
  Hide(&x);
  *setx = x;
}

static void FreeTestSTLAllocInverse(IntSet** setx) {
  IntSet* x = *setx;
  UnHide(&x);
  delete [] x;
}

// Check that normal leaked STL usage *does* result in a leak report.
// (In particular we test that there's no complex STL's own allocator
// running on top of our allocator with hooks to heap profiler
// that can result in false absence of leak report in this case.)
static void TestSTLAllocInverse() {
  HeapLeakChecker check("death_inverse_stl");
  IntSet* x;
  RunHidden(NewCallback(DoTestSTLAllocInverse, &x));
  LogHidden("Leaking", x);
  if (can_create_leaks_reliably) {
    WipeStack();  // to help with can_create_leaks_reliably
    // these might still fail occasionally, but it should be very rare
    CHECK_EQ(RUN_SILENT(check, BriefNoLeaks), false);
    CHECK_GE(check.BytesLeaked(), 100 * sizeof(int));
    CHECK_GE(check.ObjectsLeaked(), 100);
      // assumes set<>s are represented by some kind of binary tree
      // or something else allocating >=1 heap object per set object
  } else {
    WARN_IF(RUN_SILENT(check, BriefNoLeaks) != false,
            "Expected leaks not found: "
            "Some liveness flood must be too optimistic");
  }
  RunHidden(NewCallback(FreeTestSTLAllocInverse, &x));
}

template<class Alloc>
static void DirectTestSTLAlloc(Alloc allocator, const char* name) {
  HeapLeakChecker check((string("direct_stl-") + name).c_str());
  static const int kSize = 1000;
  typename Alloc::pointer ptrs[kSize];
  for (int i = 0; i < kSize; ++i) {
    typename Alloc::pointer p = allocator.allocate(i*3+1);
    HeapLeakChecker::IgnoreObject(p);
    // This will crash if p is not known to heap profiler:
    // (i.e. STL's "allocator" does not have a direct hook to heap profiler)
    HeapLeakChecker::UnIgnoreObject(p);
    ptrs[i] = p;
  }
  for (int i = 0; i < kSize; ++i) {
    allocator.deallocate(ptrs[i], i*3+1);
    ptrs[i] = NULL;
  }
  CHECK(check.BriefSameHeap());  // just in case
}

static struct group* grp = NULL;
static const int kKeys = 50;
static pthread_key_t key[kKeys];

static void KeyFree(void* ptr) {
  delete [] reinterpret_cast<char*>(ptr);
}

static bool key_init_has_run = false;

static void KeyInit() {
  for (int i = 0; i < kKeys; ++i) {
    CHECK_EQ(pthread_key_create(&key[i], KeyFree), 0);
    VLOG(2) << "pthread key " << i << " : " << key[i];
  }
  key_init_has_run = true;   // needed for a sanity-check
}

// force various C library static and thread-specific allocations
static void TestLibCAllocate() {
  CHECK(key_init_has_run);
  for (int i = 0; i < kKeys; ++i) {
    void* p = pthread_getspecific(key[i]);
    if (NULL == p) {
      if (i == 0) {
        // Test-logging inside threads which (potentially) creates and uses
        // thread-local data inside standard C++ library:
        VLOG(0) << "Adding pthread-specifics for thread " << pthread_self()
                << " pid " << getpid();
      }
      p = new(initialized) char[77 + i];
      VLOG(2) << "pthread specific " << i << " : " << p;
      pthread_setspecific(key[i], p);
    }
  }

  strerror(errno);
  const time_t now = time(NULL);
  ctime(&now);
#ifdef HAVE_EXECINFO_H
  void *stack[1];
  backtrace(stack, 1);
#endif
#ifdef HAVE_GRP_H
  gid_t gid = getgid();
  getgrgid(gid);
  if (grp == NULL)  grp = getgrent();  // a race condition here is okay
  getgrnam(grp->gr_name);
#endif
#ifdef HAVE_PWD_H
  getpwuid(geteuid());
#endif
}

// Continuous random heap memory activity to try to disrupt heap checking.
static void* HeapBusyThreadBody(void* a) {
  const int thread_num = reinterpret_cast<intptr_t>(a);
  VLOG(0) << "A new HeapBusyThread " << thread_num;
  TestLibCAllocate();

  int user = 0;
  // Try to hide ptr from heap checker in a CPU register:
  // Here we are just making a best effort to put the only pointer
  // to a heap object into a thread register to test
  // the thread-register finding machinery in the heap checker.
#if defined(__i386__) && defined(__GNUC__)
  register int** ptr asm("esi");
#elif defined(__x86_64__) && defined(__GNUC__)
  register int** ptr asm("r15");
#else
  register int** ptr;
#endif
  ptr = NULL;
  typedef set<int> Set;
  Set s1;
  while (1) {
    // TestLibCAllocate() calls libc functions that don't work so well
    // after main() has exited.  So we just don't do the test then.
    if (!g_have_exited_main)
      TestLibCAllocate();

    if (ptr == NULL) {
      ptr = new(initialized) int*[1];
      *ptr = new(initialized) int[1];
    }
    set<int>* s2 = new(initialized) set<int>[1];
    s1.insert(random());
    s2->insert(*s1.begin());
    user += *s2->begin();
    **ptr += user;
    if (random() % 51 == 0) {
      s1.clear();
      if (random() % 2 == 0) {
        s1.~Set();
        new(&s1) Set;
      }
    }
    VLOG(3) << pthread_self() << " (" << getpid() << "): in wait: "
            << ptr << ", " << *ptr << "; " << s1.size();
    VLOG(2) << pthread_self() << " (" << getpid() << "): in wait, ptr = "
            << reinterpret_cast<void*>(
                 reinterpret_cast<uintptr_t>(ptr) ^ kHideMask)
            << "^" << reinterpret_cast<void*>(kHideMask);
    if (FLAGS_test_register_leak  &&  thread_num % 5 == 0) {
      // Hide the register "ptr" value with an xor mask.
      // If one provides --test_register_leak flag, the test should
      // (with very high probability) crash on some leak check
      // with a leak report (of some x * sizeof(int) + y * sizeof(int*) bytes)
      // pointing at the two lines above in this function
      // with "new(initialized) int" in them as the allocators
      // of the leaked objects.
      // CAVEAT: We can't really prevent a compiler to save some
      // temporary values of "ptr" on the stack and thus let us find
      // the heap objects not via the register.
      // Hence it's normal if for certain compilers or optimization modes
      // --test_register_leak does not cause a leak crash of the above form
      // (this happens e.g. for gcc 4.0.1 in opt mode).
      ptr = reinterpret_cast<int **>(
          reinterpret_cast<uintptr_t>(ptr) ^ kHideMask);
      // busy loop to get the thread interrupted at:
      for (int i = 1; i < 10000000; ++i)  user += (1 + user * user * 5) / i;
      ptr = reinterpret_cast<int **>(
          reinterpret_cast<uintptr_t>(ptr) ^ kHideMask);
    } else {
      poll(NULL, 0, random() % 100);
    }
    VLOG(2) << pthread_self() << ": continuing";
    if (random() % 3 == 0) {
      delete [] *ptr;
      delete [] ptr;
      ptr = NULL;
    }
    delete [] s2;
  }
  return a;
}

static void RunHeapBusyThreads() {
  KeyInit();
  if (!FLAGS_interfering_threads || FLAGS_no_threads)  return;

  const int n = 17;  // make many threads

  pthread_t tid;
  pthread_attr_t attr;
  CHECK_EQ(pthread_attr_init(&attr), 0);
  // make them and let them run
  for (int i = 0; i < n; ++i) {
    VLOG(0) << "Creating extra thread " << i + 1;
    CHECK(pthread_create(&tid, &attr, HeapBusyThreadBody,
                         reinterpret_cast<void*>(i)) == 0);
  }

  Pause();
  Pause();
}

// ========================================================================= //

// This code section is to test that objects that are reachable from global
// variables are not reported as leaks
// as well as that (Un)IgnoreObject work for such objects fine.

// An object making functions:
// returns a "weird" pointer to a new object for which
// it's worth checking that the object is reachable via that pointer.
typedef void* (*ObjMakerFunc)();
static list<ObjMakerFunc> obj_makers;  // list of registered object makers

// Helper macro to register an object making function
// 'name' is an identifier of this object maker,
// 'body' is its function body that must declare
//        pointer 'p' to the nex object to return.
// Usage example:
//   REGISTER_OBJ_MAKER(trivial, int* p = new(initialized) int;)
#define REGISTER_OBJ_MAKER(name, body) \
  void* ObjMaker_##name##_() { \
    VLOG(1) << "Obj making " << #name; \
    body; \
    return p; \
  } \
  static ObjMakerRegistrar maker_reg_##name##__(&ObjMaker_##name##_);
// helper class for REGISTER_OBJ_MAKER
struct ObjMakerRegistrar {
  ObjMakerRegistrar(ObjMakerFunc obj_maker) { obj_makers.push_back(obj_maker); }
};

// List of the objects/pointers made with all the obj_makers
// to test reachability via global data pointers during leak checks.
static list<void*>* live_objects = new list<void*>;
  // pointer so that it does not get destructed on exit

// Exerciser for one ObjMakerFunc.
static void TestPointerReach(ObjMakerFunc obj_maker) {
  HeapLeakChecker::IgnoreObject(obj_maker());  // test IgnoreObject

  void* obj = obj_maker();
  HeapLeakChecker::IgnoreObject(obj);
  HeapLeakChecker::UnIgnoreObject(obj);  // test UnIgnoreObject
  HeapLeakChecker::IgnoreObject(obj);  // not to need deletion for obj

  live_objects->push_back(obj_maker());  // test reachability at leak check
}

// Test all ObjMakerFunc registred via REGISTER_OBJ_MAKER.
static void TestObjMakers() {
  for (list<ObjMakerFunc>::const_iterator i = obj_makers.begin();
       i != obj_makers.end(); ++i) {
    TestPointerReach(*i);
    TestPointerReach(*i);  // a couple more times would not hurt
    TestPointerReach(*i);
  }
}

// A dummy class to mimic allocation behavior of string-s.
template<class T>
struct Array {
  Array() {
    size = 3 + random() % 30;
    ptr = new(initialized) T[size];
  }
  ~Array() { delete [] ptr; }
  Array(const Array& x) {
    size = x.size;
    ptr = new(initialized) T[size];
    for (size_t i = 0; i < size; ++i) {
      ptr[i] = x.ptr[i];
    }
  }
  void operator=(const Array& x) {
    delete [] ptr;
    size = x.size;
    ptr = new(initialized) T[size];
    for (size_t i = 0; i < size; ++i) {
      ptr[i] = x.ptr[i];
    }
  }
  void append(const Array& x) {
    T* p = new(initialized) T[size + x.size];
    for (size_t i = 0; i < size; ++i) {
      p[i] = ptr[i];
    }
    for (size_t i = 0; i < x.size; ++i) {
      p[size+i] = x.ptr[i];
    }
    size += x.size;
    delete [] ptr;
    ptr = p;
  }
 private:
  size_t size;
  T* ptr;
};

// to test pointers to objects, built-in arrays, string, etc:
REGISTER_OBJ_MAKER(plain, int* p = new(initialized) int;)
REGISTER_OBJ_MAKER(int_array_1, int* p = new(initialized) int[1];)
REGISTER_OBJ_MAKER(int_array, int* p = new(initialized) int[10];)
REGISTER_OBJ_MAKER(string, Array<char>* p = new(initialized) Array<char>();)
REGISTER_OBJ_MAKER(string_array,
                   Array<char>* p = new(initialized) Array<char>[5];)
REGISTER_OBJ_MAKER(char_array, char* p = new(initialized) char[5];)
REGISTER_OBJ_MAKER(appended_string,
  Array<char>* p = new Array<char>();
  p->append(Array<char>());
)
REGISTER_OBJ_MAKER(plain_ptr, int** p = new(initialized) int*;)
REGISTER_OBJ_MAKER(linking_ptr,
  int** p = new(initialized) int*;
  *p = new(initialized) int;
)

// small objects:
REGISTER_OBJ_MAKER(0_sized, void* p = malloc(0);)  // 0-sized object (important)
REGISTER_OBJ_MAKER(1_sized, void* p = malloc(1);)
REGISTER_OBJ_MAKER(2_sized, void* p = malloc(2);)
REGISTER_OBJ_MAKER(3_sized, void* p = malloc(3);)
REGISTER_OBJ_MAKER(4_sized, void* p = malloc(4);)

static int set_data[] = { 1, 2, 3, 4, 5, 6, 7, 21, 22, 23, 24, 25, 26, 27 };
static set<int> live_leak_set(set_data, set_data+7);
static const set<int> live_leak_const_set(set_data, set_data+14);

REGISTER_OBJ_MAKER(set,
  set<int>* p = new(initialized) set<int>(set_data, set_data + 13);
)

class ClassA {
 public:
  explicit ClassA(int a) : ptr(NULL) { }
  mutable char* ptr;
};
static const ClassA live_leak_mutable(1);

template<class C>
class TClass {
 public:
  explicit TClass(int a) : ptr(NULL) { }
  mutable C val;
  mutable C* ptr;
};
static const TClass<Array<char> > live_leak_templ_mutable(1);

class ClassB {
 public:
  ClassB() { }
  char b[7];
  virtual void f() { }
  virtual ~ClassB() { }
};

class ClassB2 {
 public:
  ClassB2() { }
  char b2[11];
  virtual void f2() { }
  virtual ~ClassB2() { }
};

class ClassD1 : public ClassB {
  char d1[15];
  virtual void f() { }
};

class ClassD2 : public ClassB2 {
  char d2[19];
  virtual void f2() { }
};

class ClassD : public ClassD1, public ClassD2 {
  char d[3];
  virtual void f() { }
  virtual void f2() { }
};

// to test pointers to objects of base subclasses:

REGISTER_OBJ_MAKER(B,  ClassB*  p = new(initialized) ClassB;)
REGISTER_OBJ_MAKER(D1, ClassD1* p = new(initialized) ClassD1;)
REGISTER_OBJ_MAKER(D2, ClassD2* p = new(initialized) ClassD2;)
REGISTER_OBJ_MAKER(D,  ClassD*  p = new(initialized) ClassD;)

REGISTER_OBJ_MAKER(D1_as_B,  ClassB*  p = new(initialized) ClassD1;)
REGISTER_OBJ_MAKER(D2_as_B2, ClassB2* p = new(initialized) ClassD2;)
REGISTER_OBJ_MAKER(D_as_B,   ClassB*  p = new(initialized)  ClassD;)
REGISTER_OBJ_MAKER(D_as_D1,  ClassD1* p = new(initialized) ClassD;)
// inside-object pointers:
REGISTER_OBJ_MAKER(D_as_B2,  ClassB2* p = new(initialized) ClassD;)
REGISTER_OBJ_MAKER(D_as_D2,  ClassD2* p = new(initialized) ClassD;)

class InterfaceA {
 public:
  virtual void A() = 0;
  virtual ~InterfaceA() { }
 protected:
  InterfaceA() { }
};

class InterfaceB {
 public:
  virtual void B() = 0;
  virtual ~InterfaceB() { }
 protected:
  InterfaceB() { }
};

class InterfaceC : public InterfaceA {
 public:
  virtual void C() = 0;
  virtual ~InterfaceC() { }
 protected:
  InterfaceC() { }
};

class ClassMltD1 : public ClassB, public InterfaceB, public InterfaceC {
 public:
  char d1[11];
  virtual void f() { }
  virtual void A() { }
  virtual void B() { }
  virtual void C() { }
};

class ClassMltD2 : public InterfaceA, public InterfaceB, public ClassB {
 public:
  char d2[15];
  virtual void f() { }
  virtual void A() { }
  virtual void B() { }
};

// to specifically test heap reachability under
// inerface-only multiple inheritance (some use inside-object pointers):
REGISTER_OBJ_MAKER(MltD1,       ClassMltD1* p = new(initialized) ClassMltD1;)
REGISTER_OBJ_MAKER(MltD1_as_B,  ClassB*     p = new(initialized) ClassMltD1;)
REGISTER_OBJ_MAKER(MltD1_as_IA, InterfaceA* p = new(initialized) ClassMltD1;)
REGISTER_OBJ_MAKER(MltD1_as_IB, InterfaceB* p = new(initialized) ClassMltD1;)
REGISTER_OBJ_MAKER(MltD1_as_IC, InterfaceC* p = new(initialized) ClassMltD1;)

REGISTER_OBJ_MAKER(MltD2,       ClassMltD2* p = new(initialized) ClassMltD2;)
REGISTER_OBJ_MAKER(MltD2_as_B,  ClassB*     p = new(initialized) ClassMltD2;)
REGISTER_OBJ_MAKER(MltD2_as_IA, InterfaceA* p = new(initialized) ClassMltD2;)
REGISTER_OBJ_MAKER(MltD2_as_IB, InterfaceB* p = new(initialized) ClassMltD2;)

// to mimic UnicodeString defined in third_party/icu,
// which store a platform-independent-sized refcount in the first
// few bytes and keeps a pointer pointing behind the refcount.
REGISTER_OBJ_MAKER(unicode_string,
  char* p = new char[sizeof(uint32) * 10];
  p += sizeof(uint32);
)
// similar, but for platform-dependent-sized refcount
REGISTER_OBJ_MAKER(ref_counted,
  char* p = new char[sizeof(int) * 20];
  p += sizeof(int);
)

struct Nesting {
  struct Inner {
    Nesting* parent;
    Inner(Nesting* p) : parent(p) {}
  };
  Inner i0;
  char n1[5];
  Inner i1;
  char n2[11];
  Inner i2;
  char n3[27];
  Inner i3;
  Nesting() : i0(this), i1(this), i2(this), i3(this) {}
};

// to test inside-object pointers pointing at objects nested into heap objects:
REGISTER_OBJ_MAKER(nesting_i0, Nesting::Inner* p = &((new Nesting())->i0);)
REGISTER_OBJ_MAKER(nesting_i1, Nesting::Inner* p = &((new Nesting())->i1);)
REGISTER_OBJ_MAKER(nesting_i2, Nesting::Inner* p = &((new Nesting())->i2);)
REGISTER_OBJ_MAKER(nesting_i3, Nesting::Inner* p = &((new Nesting())->i3);)

// allocate many objects reachable from global data
static void TestHeapLeakCheckerLiveness() {
  live_leak_mutable.ptr = new(initialized) char[77];
  live_leak_templ_mutable.ptr = new(initialized) Array<char>();
  live_leak_templ_mutable.val = Array<char>();

  TestObjMakers();
}

// ========================================================================= //

// Get address (PC value) following the mmap call into addr_after_mmap_call
static void* Mmapper(uintptr_t* addr_after_mmap_call) {
  void* r = mmap(NULL, 100, PROT_READ|PROT_WRITE,
                 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  // Get current PC value into addr_after_mmap_call
  void* stack[1];
  CHECK_EQ(GetStackTrace(stack, 1, 0), 1);
  *addr_after_mmap_call = reinterpret_cast<uintptr_t>(stack[0]);
  sleep(0);  // undo -foptimize-sibling-calls
  return r;
}

// to trick complier into preventing inlining
static void* (*mmapper_addr)(uintptr_t* addr) = &Mmapper;

// TODO(maxim): copy/move this to memory_region_map_unittest
// TODO(maxim): expand this test to include mmap64, mremap and sbrk calls.
static void VerifyMemoryRegionMapStackGet() {
  uintptr_t caller_addr_limit;
  void* addr = (*mmapper_addr)(&caller_addr_limit);
  uintptr_t caller = 0;
  { MemoryRegionMap::LockHolder l;
    for (MemoryRegionMap::RegionIterator
           i = MemoryRegionMap::BeginRegionLocked();
           i != MemoryRegionMap::EndRegionLocked(); ++i) {
      if (i->start_addr == reinterpret_cast<uintptr_t>(addr)) {
        CHECK_EQ(caller, 0);
        caller = i->caller();
      }
    }
  }
  // caller must point into Mmapper function:
  if (!(reinterpret_cast<uintptr_t>(mmapper_addr) <= caller  &&
        caller < caller_addr_limit)) {
    LOGF << std::hex << "0x" << caller
         << " does not seem to point into code of function Mmapper at "
         << "0x" << reinterpret_cast<uintptr_t>(mmapper_addr)
         << "! Stack frame collection must be off in MemoryRegionMap!";
    LOG(FATAL, "\n");
  }
  munmap(addr, 100);
}

static void* Mallocer(uintptr_t* addr_after_malloc_call) {
  void* r = malloc(100);
  sleep(0);  // undo -foptimize-sibling-calls
  // Get current PC value into addr_after_malloc_call
  void* stack[1];
  CHECK_EQ(GetStackTrace(stack, 1, 0), 1);
  *addr_after_malloc_call = reinterpret_cast<uintptr_t>(stack[0]);
  return r;
}

// to trick complier into preventing inlining
static void* (*mallocer_addr)(uintptr_t* addr) = &Mallocer;

// non-static for friendship with HeapProfiler
// TODO(maxim): expand this test to include
// realloc, calloc, memalign, valloc, pvalloc, new, and new[].
extern void VerifyHeapProfileTableStackGet() {
  uintptr_t caller_addr_limit;
  void* addr = (*mallocer_addr)(&caller_addr_limit);
  uintptr_t caller =
    reinterpret_cast<uintptr_t>(HeapLeakChecker::GetAllocCaller(addr));
  // caller must point into Mallocer function:
  if (!(reinterpret_cast<uintptr_t>(mallocer_addr) <= caller  &&
        caller < caller_addr_limit)) {
    LOGF << std::hex << "0x" << caller
         << " does not seem to point into code of function Mallocer at "
         << "0x" << reinterpret_cast<uintptr_t>(mallocer_addr)
         << "! Stack frame collection must be off in heap profiler!";
    LOG(FATAL, "\n");
  }
  free(addr);
}

// ========================================================================= //

static void MakeALeak(void** arr) {
  PreventHeapReclaiming(10 * sizeof(int));
  void* a = new(initialized) int[10];
  Hide(&a);
  *arr = a;
}

// Helper to do 'return 0;' inside main(): insted we do 'return Pass();'
static int Pass() {
  fprintf(stdout, "PASS\n");
  g_have_exited_main = true;
  return 0;
}

int main(int argc, char** argv) {
  run_hidden_ptr = DoRunHidden;
  wipe_stack_ptr = DoWipeStack;
  if (!HeapLeakChecker::IsActive()) {
    CHECK_EQ(FLAGS_heap_check, "");
    LOG(WARNING, "HeapLeakChecker got turned off; we won't test much...");
  } else {
    VerifyMemoryRegionMapStackGet();
    VerifyHeapProfileTableStackGet();
  }

  KeyInit();

  // glibc 2.4, on x86_64 at least, has a lock-ordering bug, which
  // means deadlock is possible when one thread calls dl_open at the
  // same time another thread is calling dl_iterate_phdr.  libunwind
  // calls dl_iterate_phdr, and TestLibCAllocate calls dl_open (or the
  // various syscalls in it do), at least the first time it's run.
  // To avoid the deadlock, we run TestLibCAllocate once before getting
  // multi-threaded.
  // TODO(csilvers): once libc is fixed, or libunwind can work around it,
  //                 get rid of this early call.  We *want* our test to
  //                 find potential problems like this one!
  TestLibCAllocate();

  if (FLAGS_interfering_threads) {
    RunHeapBusyThreads();  // add interference early
  }
  TestLibCAllocate();

  LOGF << "In main(): heap_check=" << FLAGS_heap_check << endl;

  CHECK(HeapLeakChecker::NoGlobalLeaks());  // so far, so good

  if (FLAGS_test_leak) {
    void* arr;
    RunHidden(NewCallback(MakeALeak, &arr));
    Use(&arr);
    LogHidden("Leaking", arr);
    if (FLAGS_test_cancel_global_check) {
      HeapLeakChecker::CancelGlobalCheck();
    } else {
      // Verify we can call NoGlobalLeaks repeatedly without deadlocking
      HeapLeakChecker::NoGlobalLeaks();
      HeapLeakChecker::NoGlobalLeaks();
    }
    return Pass();
      // whole-program leak-check should (with very high probability)
      // catch the leak of arr (10 * sizeof(int) bytes)
      // (when !FLAGS_test_cancel_global_check)
  }

  if (FLAGS_test_loop_leak) {
    void* arr1;
    void* arr2;
    RunHidden(NewCallback(MakeDeathLoop, &arr1, &arr2));
    Use(&arr1);
    Use(&arr2);
    LogHidden("Loop leaking", arr1);
    LogHidden("Loop leaking", arr2);
    if (FLAGS_test_cancel_global_check) {
      HeapLeakChecker::CancelGlobalCheck();
    } else {
      // Verify we can call NoGlobalLeaks repeatedly without deadlocking
      HeapLeakChecker::NoGlobalLeaks();
      HeapLeakChecker::NoGlobalLeaks();
    }
    return Pass();
      // whole-program leak-check should (with very high probability)
      // catch the leak of arr1 and arr2 (4 * sizeof(void*) bytes)
      // (when !FLAGS_test_cancel_global_check)
  }

  if (FLAGS_test_register_leak) {
    // make us fail only where the .sh test expects:
    Pause();
    for (int i = 0; i < 100; ++i) {  // give it some time to crash
      CHECK(HeapLeakChecker::NoGlobalLeaks());
      Pause();
    }
    return Pass();
  }

  TestHeapLeakCheckerLiveness();

  HeapLeakChecker heap_check("all");

  TestHiddenPointer();

  TestHeapLeakChecker();
  Pause();
  TestLeakButTotalsMatch();
  Pause();

  TestHeapLeakCheckerDeathSimple();
  Pause();
  TestHeapLeakCheckerDeathLoop();
  Pause();
  TestHeapLeakCheckerDeathInverse();
  Pause();
  TestHeapLeakCheckerDeathNoLeaks();
  Pause();
  TestHeapLeakCheckerDeathCountLess();
  Pause();
  TestHeapLeakCheckerDeathCountMore();
  Pause();

  TestHeapLeakCheckerDeathTrick();
  Pause();

  CHECK(HeapLeakChecker::NoGlobalLeaks());  // so far, so good

  TestHeapLeakCheckerNoFalsePositives();
  Pause();

  TestHeapLeakCheckerDisabling();
  Pause();

  TestSTLAlloc();
  Pause();
  TestSTLAllocInverse();
  Pause();

  // Test that various STL allocators work.  Some of these are redundant, but
  // we don't know how STL might change in the future.  For example,
  // http://wiki/Main/StringNeStdString.
#define DTSL(a) { DirectTestSTLAlloc(a, #a); \
                  Pause(); }
  DTSL(std::allocator<char>());
  DTSL(std::allocator<int>());
  DTSL(std::string().get_allocator());
  DTSL(string().get_allocator());
  DTSL(vector<int>().get_allocator());
  DTSL(vector<double>().get_allocator());
  DTSL(vector<vector<int> >().get_allocator());
  DTSL(vector<string>().get_allocator());
  DTSL((map<string, string>().get_allocator()));
  DTSL((map<string, int>().get_allocator()));
  DTSL(set<char>().get_allocator());
#undef DTSL

  TestLibCAllocate();
  Pause();

  CHECK(HeapLeakChecker::NoGlobalLeaks());  // so far, so good

  Pause();

  if (!FLAGS_maybe_stripped) {
    CHECK(heap_check.SameHeap());
  } else {
    WARN_IF(heap_check.SameHeap() != true,
            "overall leaks are caught; we must be using a stripped binary");
  }

  CHECK(HeapLeakChecker::NoGlobalLeaks());  // so far, so good

  return Pass();
}

/* [<][>][^][v][top][bottom][index][help] */