root/third_party/libwebp/dsp/yuv.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. VP8Clip8
  2. VP8YUVToR
  3. VP8YUVToG
  4. VP8YUVToB
  5. VP8YuvToRgb
  6. VP8YuvToBgr
  7. VP8YuvToRgb565
  8. VP8YuvToRgba4444
  9. VP8YuvToRgb
  10. VP8YuvToBgr
  11. VP8YuvToRgb565
  12. VP8YuvToRgba4444
  13. VP8YuvToArgb
  14. VP8YuvToBgra
  15. VP8YuvToRgba
  16. VP8ClipUV
  17. VP8RGBToY
  18. VP8RGBToU
  19. VP8RGBToV
  20. VP8RGBToY
  21. VP8_RGB_TO_U
  22. VP8_RGB_TO_V

// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// inline YUV<->RGB conversion function
//
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
// More information at: http://en.wikipedia.org/wiki/YCbCr
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
//
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
//   R = 1.164 * (Y-16) + 1.596 * (V-128)
//   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
//   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
// where Y is in the [16,235] range, and U/V in the [16,240] range.
// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
// So in this case the formulae should read:
//   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
//   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
//   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
// once factorized.
// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
// That's the maximum possible for a convenient ARM implementation.
//
// Author: Skal (pascal.massimino@gmail.com)

#ifndef WEBP_DSP_YUV_H_
#define WEBP_DSP_YUV_H_

#include "./dsp.h"
#include "../dec/decode_vp8.h"

// Define the following to use the LUT-based code:
// #define WEBP_YUV_USE_TABLE

#if defined(WEBP_EXPERIMENTAL_FEATURES)
// Do NOT activate this feature for real compression. This is only experimental!
// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
// This colorspace is close to Rec.601's Y'CbCr model with the notable
// difference of allowing larger range for luma/chroma.
// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
// #define USE_YUVj
#endif

//------------------------------------------------------------------------------
// YUV -> RGB conversion

#ifdef __cplusplus
extern "C" {
#endif

enum {
  YUV_FIX = 16,                    // fixed-point precision for RGB->YUV
  YUV_HALF = 1 << (YUV_FIX - 1),
  YUV_MASK = (256 << YUV_FIX) - 1,
  YUV_RANGE_MIN = -227,            // min value of r/g/b output
  YUV_RANGE_MAX = 256 + 226,       // max value of r/g/b output

  YUV_FIX2 = 14,                   // fixed-point precision for YUV->RGB
  YUV_HALF2 = 1 << (YUV_FIX2 - 1),
  YUV_MASK2 = (256 << YUV_FIX2) - 1
};

// These constants are 14b fixed-point version of ITU-R BT.601 constants.
#define kYScale 19077    // 1.164 = 255 / 219
#define kVToR   26149    // 1.596 = 255 / 112 * 0.701
#define kUToG   6419     // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
#define kVToG   13320    // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
#define kUToB   33050    // 2.018 = 255 / 112 * 0.886
#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)

//------------------------------------------------------------------------------

#if !defined(WEBP_YUV_USE_TABLE)

// slower on x86 by ~7-8%, but bit-exact with the SSE2 version

static WEBP_INLINE int VP8Clip8(int v) {
  return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
}

static WEBP_INLINE int VP8YUVToR(int y, int v) {
  return VP8Clip8(kYScale * y + kVToR * v + kRCst);
}

static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
  return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
}

static WEBP_INLINE int VP8YUVToB(int y, int u) {
  return VP8Clip8(kYScale * y + kUToB * u + kBCst);
}

static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
                                    uint8_t* const rgb) {
  rgb[0] = VP8YUVToR(y, v);
  rgb[1] = VP8YUVToG(y, u, v);
  rgb[2] = VP8YUVToB(y, u);
}

static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
                                    uint8_t* const bgr) {
  bgr[0] = VP8YUVToB(y, u);
  bgr[1] = VP8YUVToG(y, u, v);
  bgr[2] = VP8YUVToR(y, v);
}

static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
                                       uint8_t* const rgb) {
  const int r = VP8YUVToR(y, v);      // 5 usable bits
  const int g = VP8YUVToG(y, u, v);   // 6 usable bits
  const int b = VP8YUVToB(y, u);      // 5 usable bits
  const int rg = (r & 0xf8) | (g >> 5);
  const int gb = ((g << 3) & 0xe0) | (b >> 3);
#ifdef WEBP_SWAP_16BIT_CSP
  rgb[0] = gb;
  rgb[1] = rg;
#else
  rgb[0] = rg;
  rgb[1] = gb;
#endif
}

static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
                                         uint8_t* const argb) {
  const int r = VP8YUVToR(y, v);        // 4 usable bits
  const int g = VP8YUVToG(y, u, v);     // 4 usable bits
  const int b = VP8YUVToB(y, u);        // 4 usable bits
  const int rg = (r & 0xf0) | (g >> 4);
  const int ba = (b & 0xf0) | 0x0f;     // overwrite the lower 4 bits
#ifdef WEBP_SWAP_16BIT_CSP
  argb[0] = ba;
  argb[1] = rg;
#else
  argb[0] = rg;
  argb[1] = ba;
#endif
}

#else

// Table-based version, not totally equivalent to the SSE2 version.
// Rounding diff is only +/-1 though.

extern int16_t VP8kVToR[256], VP8kUToB[256];
extern int32_t VP8kVToG[256], VP8kUToG[256];
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];

static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
                                    uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
  rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
                                    uint8_t* const bgr) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
  bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
                                       uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
                  (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
  const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
                   (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
#ifdef WEBP_SWAP_16BIT_CSP
  rgb[0] = gb;
  rgb[1] = rg;
#else
  rgb[0] = rg;
  rgb[1] = gb;
#endif
}

static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
                                         uint8_t* const argb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
                   VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
  const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
#ifdef WEBP_SWAP_16BIT_CSP
  argb[0] = ba;
  argb[1] = rg;
#else
  argb[0] = rg;
  argb[1] = ba;
#endif
}

#endif  // WEBP_YUV_USE_TABLE

//-----------------------------------------------------------------------------
// Alpha handling variants

static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const argb) {
  argb[0] = 0xff;
  VP8YuvToRgb(y, u, v, argb + 1);
}

static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const bgra) {
  VP8YuvToBgr(y, u, v, bgra);
  bgra[3] = 0xff;
}

static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const rgba) {
  VP8YuvToRgb(y, u, v, rgba);
  rgba[3] = 0xff;
}

// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);

//-----------------------------------------------------------------------------
// SSE2 extra functions (mostly for upsampling_sse2.c)

#if defined(WEBP_USE_SSE2)

#if defined(FANCY_UPSAMPLING)
// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst);
void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst);
void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst);
void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst);
#endif  // FANCY_UPSAMPLING

// Must be called to initialize tables before using the functions.
void VP8YUVInitSSE2(void);

#endif    // WEBP_USE_SSE2

//------------------------------------------------------------------------------
// RGB -> YUV conversion

// Stub functions that can be called with various rounding values:
static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
  uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
  return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
}

#ifndef USE_YUVj

static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
  const int luma = 16839 * r + 33059 * g + 6420 * b;
  return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
  const int u = -9719 * r - 19081 * g + 28800 * b;
  return VP8ClipUV(u, rounding);
}

static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
  const int v = +28800 * r - 24116 * g - 4684 * b;
  return VP8ClipUV(v, rounding);
}

#else

// This JPEG-YUV colorspace, only for comparison!
// These are also 16bit precision coefficients from Rec.601, but with full
// [0..255] output range.
static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
  const int luma = 19595 * r + 38470 * g + 7471 * b;
  return (luma + rounding) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) {
  const int u = -11058 * r - 21710 * g + 32768 * b;
  return VP8ClipUV(u, rounding);
}

static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) {
  const int v = 32768 * r - 27439 * g - 5329 * b;
  return VP8ClipUV(v, rounding);
}

#endif    // USE_YUVj

#ifdef __cplusplus
}    // extern "C"
#endif

#endif  /* WEBP_DSP_YUV_H_ */

/* [<][>][^][v][top][bottom][index][help] */