root/third_party/sqlite/src/ext/fts2/fts2_hash.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fts2HashMalloc
  2. fts2HashFree
  3. sqlite3Fts2HashInit
  4. sqlite3Fts2HashClear
  5. strHash
  6. strCompare
  7. binHash
  8. binCompare
  9. hashFunction
  10. compareFunction
  11. insertElement
  12. rehash
  13. findElementGivenHash
  14. removeElementGivenHash
  15. sqlite3Fts2HashFind
  16. sqlite3Fts2HashInsert

/*
** 2001 September 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of generic hash-tables used in SQLite.
** We've modified it slightly to serve as a standalone hash table
** implementation for the full-text indexing module.
*/

/*
** The code in this file is only compiled if:
**
**     * The FTS2 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS2 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"
#include "fts2_hash.h"

/*
** Malloc and Free functions
*/
static void *fts2HashMalloc(int n){
  void *p = sqlite3_malloc(n);
  if( p ){
    memset(p, 0, n);
  }
  return p;
}
static void fts2HashFree(void *p){
  sqlite3_free(p);
}

/* Turn bulk memory into a hash table object by initializing the
** fields of the Hash structure.
**
** "pNew" is a pointer to the hash table that is to be initialized.
** keyClass is one of the constants 
** FTS2_HASH_BINARY or FTS2_HASH_STRING.  The value of keyClass 
** determines what kind of key the hash table will use.  "copyKey" is
** true if the hash table should make its own private copy of keys and
** false if it should just use the supplied pointer.
*/
void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){
  assert( pNew!=0 );
  assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY );
  pNew->keyClass = keyClass;
  pNew->copyKey = copyKey;
  pNew->first = 0;
  pNew->count = 0;
  pNew->htsize = 0;
  pNew->ht = 0;
}

/* Remove all entries from a hash table.  Reclaim all memory.
** Call this routine to delete a hash table or to reset a hash table
** to the empty state.
*/
void sqlite3Fts2HashClear(fts2Hash *pH){
  fts2HashElem *elem;         /* For looping over all elements of the table */

  assert( pH!=0 );
  elem = pH->first;
  pH->first = 0;
  fts2HashFree(pH->ht);
  pH->ht = 0;
  pH->htsize = 0;
  while( elem ){
    fts2HashElem *next_elem = elem->next;
    if( pH->copyKey && elem->pKey ){
      fts2HashFree(elem->pKey);
    }
    fts2HashFree(elem);
    elem = next_elem;
  }
  pH->count = 0;
}

/*
** Hash and comparison functions when the mode is FTS2_HASH_STRING
*/
static int strHash(const void *pKey, int nKey){
  const char *z = (const char *)pKey;
  int h = 0;
  if( nKey<=0 ) nKey = (int) strlen(z);
  while( nKey > 0  ){
    h = (h<<3) ^ h ^ *z++;
    nKey--;
  }
  return h & 0x7fffffff;
}
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  if( n1!=n2 ) return 1;
  return strncmp((const char*)pKey1,(const char*)pKey2,n1);
}

/*
** Hash and comparison functions when the mode is FTS2_HASH_BINARY
*/
static int binHash(const void *pKey, int nKey){
  int h = 0;
  const char *z = (const char *)pKey;
  while( nKey-- > 0 ){
    h = (h<<3) ^ h ^ *(z++);
  }
  return h & 0x7fffffff;
}
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
  if( n1!=n2 ) return 1;
  return memcmp(pKey1,pKey2,n1);
}

/*
** Return a pointer to the appropriate hash function given the key class.
**
** The C syntax in this function definition may be unfamilar to some 
** programmers, so we provide the following additional explanation:
**
** The name of the function is "hashFunction".  The function takes a
** single parameter "keyClass".  The return value of hashFunction()
** is a pointer to another function.  Specifically, the return value
** of hashFunction() is a pointer to a function that takes two parameters
** with types "const void*" and "int" and returns an "int".
*/
static int (*hashFunction(int keyClass))(const void*,int){
  if( keyClass==FTS2_HASH_STRING ){
    return &strHash;
  }else{
    assert( keyClass==FTS2_HASH_BINARY );
    return &binHash;
  }
}

/*
** Return a pointer to the appropriate hash function given the key class.
**
** For help in interpreted the obscure C code in the function definition,
** see the header comment on the previous function.
*/
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
  if( keyClass==FTS2_HASH_STRING ){
    return &strCompare;
  }else{
    assert( keyClass==FTS2_HASH_BINARY );
    return &binCompare;
  }
}

/* Link an element into the hash table
*/
static void insertElement(
  fts2Hash *pH,            /* The complete hash table */
  struct _fts2ht *pEntry,  /* The entry into which pNew is inserted */
  fts2HashElem *pNew       /* The element to be inserted */
){
  fts2HashElem *pHead;     /* First element already in pEntry */
  pHead = pEntry->chain;
  if( pHead ){
    pNew->next = pHead;
    pNew->prev = pHead->prev;
    if( pHead->prev ){ pHead->prev->next = pNew; }
    else             { pH->first = pNew; }
    pHead->prev = pNew;
  }else{
    pNew->next = pH->first;
    if( pH->first ){ pH->first->prev = pNew; }
    pNew->prev = 0;
    pH->first = pNew;
  }
  pEntry->count++;
  pEntry->chain = pNew;
}


/* Resize the hash table so that it cantains "new_size" buckets.
** "new_size" must be a power of 2.  The hash table might fail 
** to resize if sqliteMalloc() fails.
*/
static void rehash(fts2Hash *pH, int new_size){
  struct _fts2ht *new_ht;          /* The new hash table */
  fts2HashElem *elem, *next_elem;  /* For looping over existing elements */
  int (*xHash)(const void*,int);   /* The hash function */

  assert( (new_size & (new_size-1))==0 );
  new_ht = (struct _fts2ht *)fts2HashMalloc( new_size*sizeof(struct _fts2ht) );
  if( new_ht==0 ) return;
  fts2HashFree(pH->ht);
  pH->ht = new_ht;
  pH->htsize = new_size;
  xHash = hashFunction(pH->keyClass);
  for(elem=pH->first, pH->first=0; elem; elem = next_elem){
    int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
    next_elem = elem->next;
    insertElement(pH, &new_ht[h], elem);
  }
}

/* This function (for internal use only) locates an element in an
** hash table that matches the given key.  The hash for this key has
** already been computed and is passed as the 4th parameter.
*/
static fts2HashElem *findElementGivenHash(
  const fts2Hash *pH, /* The pH to be searched */
  const void *pKey,   /* The key we are searching for */
  int nKey,
  int h               /* The hash for this key. */
){
  fts2HashElem *elem;            /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  int (*xCompare)(const void*,int,const void*,int);  /* comparison function */

  if( pH->ht ){
    struct _fts2ht *pEntry = &pH->ht[h];
    elem = pEntry->chain;
    count = pEntry->count;
    xCompare = compareFunction(pH->keyClass);
    while( count-- && elem ){
      if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
        return elem;
      }
      elem = elem->next;
    }
  }
  return 0;
}

/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
  fts2Hash *pH,         /* The pH containing "elem" */
  fts2HashElem* elem,   /* The element to be removed from the pH */
  int h                 /* Hash value for the element */
){
  struct _fts2ht *pEntry;
  if( elem->prev ){
    elem->prev->next = elem->next; 
  }else{
    pH->first = elem->next;
  }
  if( elem->next ){
    elem->next->prev = elem->prev;
  }
  pEntry = &pH->ht[h];
  if( pEntry->chain==elem ){
    pEntry->chain = elem->next;
  }
  pEntry->count--;
  if( pEntry->count<=0 ){
    pEntry->chain = 0;
  }
  if( pH->copyKey && elem->pKey ){
    fts2HashFree(elem->pKey);
  }
  fts2HashFree( elem );
  pH->count--;
  if( pH->count<=0 ){
    assert( pH->first==0 );
    assert( pH->count==0 );
    fts2HashClear(pH);
  }
}

/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey.  Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
  int h;                 /* A hash on key */
  fts2HashElem *elem;    /* The element that matches key */
  int (*xHash)(const void*,int);  /* The hash function */

  if( pH==0 || pH->ht==0 ) return 0;
  xHash = hashFunction(pH->keyClass);
  assert( xHash!=0 );
  h = (*xHash)(pKey,nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
  return elem ? elem->data : 0;
}

/* Insert an element into the hash table pH.  The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created.  A copy of the key is made if the copyKey
** flag is set.  NULL is returned.
**
** If another element already exists with the same key, then the
** new data replaces the old data and the old data is returned.
** The key is not copied in this instance.  If a malloc fails, then
** the new data is returned and the hash table is unchanged.
**
** If the "data" parameter to this function is NULL, then the
** element corresponding to "key" is removed from the hash table.
*/
void *sqlite3Fts2HashInsert(
  fts2Hash *pH,        /* The hash table to insert into */
  const void *pKey,    /* The key */
  int nKey,            /* Number of bytes in the key */
  void *data           /* The data */
){
  int hraw;                 /* Raw hash value of the key */
  int h;                    /* the hash of the key modulo hash table size */
  fts2HashElem *elem;       /* Used to loop thru the element list */
  fts2HashElem *new_elem;   /* New element added to the pH */
  int (*xHash)(const void*,int);  /* The hash function */

  assert( pH!=0 );
  xHash = hashFunction(pH->keyClass);
  assert( xHash!=0 );
  hraw = (*xHash)(pKey, nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  h = hraw & (pH->htsize-1);
  elem = findElementGivenHash(pH,pKey,nKey,h);
  if( elem ){
    void *old_data = elem->data;
    if( data==0 ){
      removeElementGivenHash(pH,elem,h);
    }else{
      elem->data = data;
    }
    return old_data;
  }
  if( data==0 ) return 0;
  new_elem = (fts2HashElem*)fts2HashMalloc( sizeof(fts2HashElem) );
  if( new_elem==0 ) return data;
  if( pH->copyKey && pKey!=0 ){
    new_elem->pKey = fts2HashMalloc( nKey );
    if( new_elem->pKey==0 ){
      fts2HashFree(new_elem);
      return data;
    }
    memcpy((void*)new_elem->pKey, pKey, nKey);
  }else{
    new_elem->pKey = (void*)pKey;
  }
  new_elem->nKey = nKey;
  pH->count++;
  if( pH->htsize==0 ){
    rehash(pH,8);
    if( pH->htsize==0 ){
      pH->count = 0;
      fts2HashFree(new_elem);
      return data;
    }
  }
  if( pH->count > pH->htsize ){
    rehash(pH,pH->htsize*2);
  }
  assert( pH->htsize>0 );
  assert( (pH->htsize & (pH->htsize-1))==0 );
  h = hraw & (pH->htsize-1);
  insertElement(pH, &pH->ht[h], new_elem);
  new_elem->data = data;
  return 0;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */

/* [<][>][^][v][top][bottom][index][help] */