root/net/quic/congestion_control/tcp_cubic_sender.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. max_tcp_congestion_window_
  2. InSlowStart
  3. SetFromConfig
  4. OnIncomingQuicCongestionFeedbackFrame
  5. OnPacketAcked
  6. OnPacketLost
  7. OnPacketSent
  8. OnPacketAbandoned
  9. TimeUntilSend
  10. AvailableSendWindow
  11. SendWindow
  12. BandwidthEstimate
  13. RetransmissionDelay
  14. GetCongestionWindow
  15. IsCwndLimited
  16. InRecovery
  17. MaybeIncreaseCwnd
  18. OnRetransmissionTimeout
  19. UpdateRtt

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/congestion_control/tcp_cubic_sender.h"

#include <algorithm>

#include "base/metrics/histogram.h"
#include "net/quic/congestion_control/rtt_stats.h"

using std::max;
using std::min;

namespace net {

namespace {
// Constants based on TCP defaults.
// The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
// fast retransmission.  The cwnd after a timeout is still 1.
const QuicTcpCongestionWindow kMinimumCongestionWindow = 2;
const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS;
const QuicByteCount kDefaultReceiveWindow = 64000;
const int64 kInitialCongestionWindow = 10;
const int kMaxBurstLength = 3;
};  // namespace

TcpCubicSender::TcpCubicSender(
    const QuicClock* clock,
    const RttStats* rtt_stats,
    bool reno,
    QuicTcpCongestionWindow max_tcp_congestion_window,
    QuicConnectionStats* stats)
    : hybrid_slow_start_(clock),
      cubic_(clock, stats),
      rtt_stats_(rtt_stats),
      reno_(reno),
      congestion_window_count_(0),
      receive_window_(kDefaultReceiveWindow),
      bytes_in_flight_(0),
      prr_out_(0),
      prr_delivered_(0),
      ack_count_since_loss_(0),
      bytes_in_flight_before_loss_(0),
      largest_sent_sequence_number_(0),
      largest_acked_sequence_number_(0),
      largest_sent_at_last_cutback_(0),
      congestion_window_(kInitialCongestionWindow),
      slowstart_threshold_(max_tcp_congestion_window),
      max_tcp_congestion_window_(max_tcp_congestion_window) {
}

TcpCubicSender::~TcpCubicSender() {
  UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_);
}

bool TcpCubicSender::InSlowStart() const {
  return congestion_window_ < slowstart_threshold_;
}

void TcpCubicSender::SetFromConfig(const QuicConfig& config, bool is_server) {
  if (is_server) {
    // Set the initial window size.
    congestion_window_ = config.server_initial_congestion_window();
  }
}

void TcpCubicSender::OnIncomingQuicCongestionFeedbackFrame(
    const QuicCongestionFeedbackFrame& feedback,
    QuicTime feedback_receive_time) {
  receive_window_ = feedback.tcp.receive_window;
}

void TcpCubicSender::OnPacketAcked(
    QuicPacketSequenceNumber acked_sequence_number, QuicByteCount acked_bytes) {
  DCHECK_GE(bytes_in_flight_, acked_bytes);
  bytes_in_flight_ -= acked_bytes;
  prr_delivered_ += acked_bytes;
  ++ack_count_since_loss_;
  largest_acked_sequence_number_ = max(acked_sequence_number,
                                       largest_acked_sequence_number_);
  MaybeIncreaseCwnd(acked_sequence_number);
  // TODO(ianswett): Should this even be called when not in slow start?
  hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart());
}

void TcpCubicSender::OnPacketLost(QuicPacketSequenceNumber sequence_number,
                                  QuicTime /*ack_receive_time*/) {
  // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
  // already sent should be treated as a single loss event, since it's expected.
  if (sequence_number <= largest_sent_at_last_cutback_) {
    DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number
             << " because it was sent prior to the last CWND cutback.";
    return;
  }

  // Initialize proportional rate reduction(RFC 6937) variables.
  prr_out_ = 0;
  bytes_in_flight_before_loss_ = bytes_in_flight_;
  // Since all losses are triggered by an incoming ack currently, and acks are
  // registered before losses by the SentPacketManager, initialize the variables
  // as though one ack was received directly after the loss.  This is too low
  // for stretch acks, but we expect missing packets to be immediately acked.
  // This ensures 1 or 2 packets are immediately able to be sent, depending upon
  // whether we're in PRR or PRR-SSRB mode.
  prr_delivered_ = kMaxPacketSize;
  ack_count_since_loss_ = 1;

  // In a normal TCP we would need to know the lowest missing packet to detect
  // if we receive 3 missing packets. Here we get a missing packet for which we
  // enter TCP Fast Retransmit immediately.
  if (reno_) {
    congestion_window_ = congestion_window_ >> 1;
  } else {
    congestion_window_ =
        cubic_.CongestionWindowAfterPacketLoss(congestion_window_);
  }
  slowstart_threshold_ = congestion_window_;
  // Enforce TCP's minimimum congestion window of 2*MSS.
  if (congestion_window_ < kMinimumCongestionWindow) {
    congestion_window_ = kMinimumCongestionWindow;
  }
  largest_sent_at_last_cutback_ = largest_sent_sequence_number_;
  // reset packet count from congestion avoidance mode. We start
  // counting again when we're out of recovery.
  congestion_window_count_ = 0;
  DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_
           << " slowstart threshold: " << slowstart_threshold_;
}

bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/,
                                  QuicPacketSequenceNumber sequence_number,
                                  QuicByteCount bytes,
                                  HasRetransmittableData is_retransmittable) {
  // Only update bytes_in_flight_ for data packets.
  if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) {
    return false;
  }

  bytes_in_flight_ += bytes;
  prr_out_ += bytes;
  if (largest_sent_sequence_number_ < sequence_number) {
    // TODO(rch): Ensure that packets are really sent in order.
    // DCHECK_LT(largest_sent_sequence_number_, sequence_number);
    largest_sent_sequence_number_ = sequence_number;
  }
  hybrid_slow_start_.OnPacketSent(sequence_number, AvailableSendWindow());
  return true;
}

void TcpCubicSender::OnPacketAbandoned(QuicPacketSequenceNumber sequence_number,
                                       QuicByteCount abandoned_bytes) {
  DCHECK_GE(bytes_in_flight_, abandoned_bytes);
  bytes_in_flight_ -= abandoned_bytes;
}

QuicTime::Delta TcpCubicSender::TimeUntilSend(
    QuicTime /* now */,
    HasRetransmittableData has_retransmittable_data) {
  if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) {
    // For TCP we can always send an ACK immediately.
    // We also allow tail loss probes to be sent immediately, in keeping with
    // tail loss probe (draft-dukkipati-tcpm-tcp-loss-probe-01).
    return QuicTime::Delta::Zero();
  }
  if (AvailableSendWindow() > 0) {
    // During PRR-SSRB, limit outgoing packets to 1 extra MSS per ack, instead
    // of sending the entire available window. This prevents burst retransmits
    // when more packets are lost than the CWND reduction.
    //   limit = MAX(prr_delivered - prr_out, DeliveredData) + MSS
    if (InRecovery() &&
        prr_delivered_ + ack_count_since_loss_ * kMaxSegmentSize < prr_out_) {
      return QuicTime::Delta::Infinite();
    }
    return QuicTime::Delta::Zero();
  }
  // Implement Proportional Rate Reduction (RFC6937)
  // Checks a simplified version of the PRR formula that doesn't use division:
  // AvailableSendWindow =
  //   CEIL(prr_delivered * ssthresh / BytesInFlightAtLoss) - prr_sent
  if (InRecovery() &&
      prr_delivered_ * slowstart_threshold_ * kMaxSegmentSize >
          prr_out_ * bytes_in_flight_before_loss_) {
    return QuicTime::Delta::Zero();
  }
  return QuicTime::Delta::Infinite();
}

QuicByteCount TcpCubicSender::AvailableSendWindow() {
  if (bytes_in_flight_ > SendWindow()) {
    return 0;
  }
  return SendWindow() - bytes_in_flight_;
}

QuicByteCount TcpCubicSender::SendWindow() {
  // What's the current send window in bytes.
  return min(receive_window_, GetCongestionWindow());
}

QuicBandwidth TcpCubicSender::BandwidthEstimate() const {
  return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(),
                                              rtt_stats_->SmoothedRtt());
}

QuicTime::Delta TcpCubicSender::RetransmissionDelay() const {
  if (!rtt_stats_->HasUpdates()) {
    return QuicTime::Delta::Zero();
  }
  return QuicTime::Delta::FromMicroseconds(
      rtt_stats_->SmoothedRtt().ToMicroseconds() +
      4 * rtt_stats_->mean_deviation().ToMicroseconds());
}

QuicByteCount TcpCubicSender::GetCongestionWindow() const {
  return congestion_window_ * kMaxSegmentSize;
}

bool TcpCubicSender::IsCwndLimited() const {
  const QuicByteCount congestion_window_bytes = congestion_window_ *
      kMaxSegmentSize;
  if (bytes_in_flight_ >= congestion_window_bytes) {
    return true;
  }
  const QuicByteCount tcp_max_burst = kMaxBurstLength * kMaxSegmentSize;
  const QuicByteCount left = congestion_window_bytes - bytes_in_flight_;
  return left <= tcp_max_burst;
}

bool TcpCubicSender::InRecovery() const {
  return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ &&
      largest_acked_sequence_number_ != 0;
}

// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
void TcpCubicSender::MaybeIncreaseCwnd(
    QuicPacketSequenceNumber acked_sequence_number) {
  if (!IsCwndLimited()) {
    // We don't update the congestion window unless we are close to using the
    // window we have available.
    return;
  }
  if (acked_sequence_number <= largest_sent_at_last_cutback_) {
    // We don't increase the congestion window during recovery.
    return;
  }
  if (InSlowStart()) {
    // congestion_window_cnt is the number of acks since last change of snd_cwnd
    if (congestion_window_ < max_tcp_congestion_window_) {
      // TCP slow start, exponential growth, increase by one for each ACK.
      ++congestion_window_;
    }
    DVLOG(1) << "Slow start; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_;
    return;
  }
  if (congestion_window_ >= max_tcp_congestion_window_) {
    return;
  }
  // Congestion avoidance
  if (reno_) {
    // Classic Reno congestion avoidance provided for testing.

    ++congestion_window_count_;
    if (congestion_window_count_ >= congestion_window_) {
      ++congestion_window_;
      congestion_window_count_ = 0;
    }

    DVLOG(1) << "Reno; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_
             << " congestion window count: " << congestion_window_count_;
  } else {
    congestion_window_ = min(max_tcp_congestion_window_,
                             cubic_.CongestionWindowAfterAck(
                                 congestion_window_, rtt_stats_->min_rtt()));
    DVLOG(1) << "Cubic; congestion window: " << congestion_window_
             << " slowstart threshold: " << slowstart_threshold_;
  }
}

void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) {
  bytes_in_flight_ = 0;
  largest_sent_at_last_cutback_ = 0;
  if (packets_retransmitted) {
    cubic_.Reset();
    congestion_window_ = kMinimumCongestionWindow;
  }
}

void TcpCubicSender::UpdateRtt(QuicTime::Delta rtt) {
  // Hybrid start triggers when cwnd is larger than some threshold.
  if (InSlowStart() &&
      hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_, congestion_window_)) {
     slowstart_threshold_ = congestion_window_;
  }
}

}  // namespace net

/* [<][>][^][v][top][bottom][index][help] */