root/content/browser/media/capture/video_capture_oracle_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. SteadyStateSampleAndAdvance
  2. SteadyStateNoSampleAndAdvance
  3. TimeTicksFromString
  4. TestRedundantCaptureStrategy
  5. TEST
  6. TEST
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. TEST
  12. ReplayCheckingSamplerDecisions
  13. TEST
  14. TEST
  15. TEST

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/browser/media/capture/video_capture_oracle.h"

#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace content {
namespace {

void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
                                 SmoothEventSampler* sampler,
                                 base::TimeTicks* t) {
  ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
  ASSERT_TRUE(sampler->HasUnrecordedEvent());
  sampler->RecordSample();
  ASSERT_FALSE(sampler->HasUnrecordedEvent());
  ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
  *t += vsync;
  ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}

void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
                                   SmoothEventSampler* sampler,
                                   base::TimeTicks* t) {
  ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t));
  ASSERT_TRUE(sampler->HasUnrecordedEvent());
  ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
  *t += vsync;
  ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}

void TimeTicksFromString(const char* string, base::TimeTicks* t) {
  base::Time time;
  ASSERT_TRUE(base::Time::FromString(string, &time));
  *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
}

void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
                                  int redundant_capture_goal,
                                  SmoothEventSampler* sampler,
                                  base::TimeTicks* t) {
  // Before any events have been considered, we're overdue for sampling.
  ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t));

  // Consider the first event.  We want to sample that.
  ASSERT_FALSE(sampler->HasUnrecordedEvent());
  ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
  ASSERT_TRUE(sampler->HasUnrecordedEvent());
  sampler->RecordSample();
  ASSERT_FALSE(sampler->HasUnrecordedEvent());

  // After more than one capture period has passed without considering an event,
  // we should repeatedly be overdue for sampling.  However, once the redundant
  // capture goal is achieved, we should no longer be overdue for sampling.
  *t += capture_period * 4;
  for (int i = 0; i < redundant_capture_goal; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_FALSE(sampler->HasUnrecordedEvent());
    ASSERT_TRUE(sampler->IsOverdueForSamplingAt(*t))
        << "Should sample until redundant capture goal is hit";
    sampler->RecordSample();
    *t += capture_period;  // Timer fires once every capture period.
  }
  ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t))
      << "Should not be overdue once redundant capture goal achieved.";
}

// 60Hz sampled at 30Hz should produce 30Hz.  In addition, this test contains
// much more comprehensive before/after/edge-case scenarios than the others.
TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const int redundant_capture_goal = 200;
  const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;

  SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
                               &sampler, &t);

  // Steady state, we should capture every other vsync, indefinitely.
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }

  // Now pretend we're limited by backpressure in the pipeline. In this scenario
  // case we are adding events but not sampling them.
  for (int i = 0; i < 20; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
    ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
    ASSERT_TRUE(sampler.HasUnrecordedEvent());
    t += vsync;
  }

  // Now suppose we can sample again. We should be back in the steady state,
  // but at a different phase.
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }
}

// 50Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const int redundant_capture_goal = 2;
  const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;

  SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
                               &sampler, &t);

  // Steady state, we should capture 1st, 2nd and 4th frames out of every five
  // frames, indefinitely.
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }

  // Now pretend we're limited by backpressure in the pipeline. In this scenario
  // case we are adding events but not sampling them.
  for (int i = 0; i < 12; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t));
    ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
    t += vsync;
  }

  // Now suppose we can sample again. We should be back in the steady state
  // again.
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }
}

// 75Hz sampled at 30Hz should produce a sequence where some frames are skipped.
TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const int redundant_capture_goal = 32;
  const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;

  SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
                               &sampler, &t);

  // Steady state, we should capture 1st and 3rd frames out of every five
  // frames, indefinitely.
  SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }

  // Now pretend we're limited by backpressure in the pipeline. In this scenario
  // case we are adding events but not sampling them.
  for (int i = 0; i < 20; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t));
    ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
    t += vsync;
  }

  // Now suppose we can sample again. We capture the next frame, and not the one
  // after that, and then we're back in the steady state again.
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
  SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
    SteadyStateNoSampleAndAdvance(vsync, &sampler, &t);
  }
}

// 30Hz sampled at 30Hz should produce 30Hz.
TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const int redundant_capture_goal = 1;
  const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;

  SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
                               &sampler, &t);

  // Steady state, we should capture every vsync, indefinitely.
  for (int i = 0; i < 200; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  }

  // Now pretend we're limited by backpressure in the pipeline. In this scenario
  // case we are adding events but not sampling them.
  for (int i = 0; i < 7; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
    ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
    t += vsync;
  }

  // Now suppose we can sample again. We should be back in the steady state.
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  }
}

// 24Hz sampled at 30Hz should produce 24Hz.
TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const int redundant_capture_goal = 333;
  const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;

  SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
                               &sampler, &t);

  // Steady state, we should capture every vsync, indefinitely.
  for (int i = 0; i < 200; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  }

  // Now pretend we're limited by backpressure in the pipeline. In this scenario
  // case we are adding events but not sampling them.
  for (int i = 0; i < 7; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
    ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
    t += vsync;
  }

  // Now suppose we can sample again. We should be back in the steady state.
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t));
  for (int i = 0; i < 100; i++) {
    SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
    SteadyStateSampleAndAdvance(vsync, &sampler, &t);
  }
}

TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
  const base::TimeDelta capture_period = base::TimeDelta::FromSeconds(1) / 30;
  const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);

  SmoothEventSampler sampler(capture_period, true, 1);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
  sampler.RecordSample();
  ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t))
      << "Sampled last event; should not be dirty.";
  t += overdue_period;

  // Now simulate 2 events with the same clock value.
  ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
  sampler.RecordSample();
  ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t))
      << "Two events at same time -- expected second not to be sampled.";
  ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period))
      << "Second event should dirty the capture state.";
  sampler.RecordSample();
  ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t + overdue_period));
}

TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
  const base::TimeDelta timer_interval = base::TimeDelta::FromSeconds(1) / 30;

  SmoothEventSampler should_not_poll(timer_interval, true, 1);
  SmoothEventSampler should_poll(timer_interval, false, 1);
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);

  // Do one round of the "happy case" where an event was received and
  // RecordSample() was called by the client.
  ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t));
  ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t));
  should_not_poll.RecordSample();
  should_poll.RecordSample();

  // One time period ahead, neither sampler says we're overdue.
  for (int i = 0; i < 3; i++) {
    t += timer_interval;
    ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
        << "Sampled last event; should not be dirty.";
    ASSERT_FALSE(should_poll.IsOverdueForSamplingAt(t))
        << "Dirty interval has not elapsed yet.";
  }

  // Next time period ahead, both samplers say we're overdue.  The non-polling
  // sampler is returning true here because it has been configured to allow one
  // redundant capture.
  t += timer_interval;
  ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t))
      << "Sampled last event; is dirty one time only to meet redundancy goal.";
  ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
      << "If updates are unreliable, must fall back to polling when idle.";
  should_not_poll.RecordSample();
  should_poll.RecordSample();

  // Forever more, the non-polling sampler returns false while the polling one
  // returns true.
  for (int i = 0; i < 100; ++i) {
    t += timer_interval;
    ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
        << "Sampled last event; should not be dirty.";
    ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
        << "If updates are unreliable, must fall back to polling when idle.";
    should_poll.RecordSample();
  }
  t += timer_interval / 3;
  ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
      << "Sampled last event; should not be dirty.";
  ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
      << "If updates are unreliable, must fall back to polling when idle.";
  should_poll.RecordSample();
}

struct DataPoint {
  bool should_capture;
  double increment_ms;
};

void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
                                    size_t num_data_points,
                                    SmoothEventSampler* sampler) {
  base::TimeTicks t;
  TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
  for (size_t i = 0; i < num_data_points; ++i) {
    t += base::TimeDelta::FromMicroseconds(
        static_cast<int64>(data_points[i].increment_ms * 1000));
    ASSERT_EQ(data_points[i].should_capture,
              sampler->AddEventAndConsiderSampling(t))
        << "at data_points[" << i << ']';
    if (data_points[i].should_capture)
      sampler->RecordSample();
  }
}

TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) {
  // Actual capturing of timing data: Initial instability as a 24 FPS video was
  // started from a still screen, then clearly followed by steady-state.
  static const DataPoint data_points[] = {
    { true, 1437.93 }, { true, 150.484 }, { true, 217.362 }, { true, 50.161 },
    { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 66.88 },
    { true, 50.161 }, { false, 0 }, { false, 0 }, { true, 50.16 },
    { true, 33.441 }, { true, 16.72 }, { false, 16.72 }, { true, 117.041 },
    { true, 16.72 }, { false, 16.72 }, { true, 50.161 }, { true, 50.16 },
    { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 16.72 },
    { false, 0 }, { true, 50.161 }, { false, 0 }, { true, 33.44 },
    { true, 16.72 }, { false, 16.721 }, { true, 66.881 }, { false, 0 },
    { true, 33.441 }, { true, 16.72 }, { true, 50.16 }, { true, 16.72 },
    { false, 16.721 }, { true, 50.161 }, { true, 50.16 }, { false, 0 },
    { true, 33.441 }, { true, 50.337 }, { true, 50.183 }, { true, 16.722 },
    { true, 50.161 }, { true, 33.441 }, { true, 50.16 }, { true, 33.441 },
    { true, 50.16 }, { true, 33.441 }, { true, 50.16 }, { true, 33.44 },
    { true, 50.161 }, { true, 50.16 }, { true, 33.44 }, { true, 33.441 },
    { true, 50.16 }, { true, 50.161 }, { true, 33.44 }, { true, 33.441 },
    { true, 50.16 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
    { true, 50.161 }, { true, 33.44 }, { true, 50.161 }, { true, 33.44 },
    { true, 83.601 }, { true, 16.72 }, { true, 33.44 }, { false, 0 }
  };

  SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
  ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}

TEST(SmoothEventSamplerTest, DrawingAt30FpsWith60HzVsyncSampledAt30Hertz) {
  // Actual capturing of timing data: Initial instability as a 30 FPS video was
  // started from a still screen, then followed by steady-state.  Drawing
  // framerate from the video rendering was a bit volatile, but averaged 30 FPS.
  static const DataPoint data_points[] = {
    { true, 2407.69 }, { true, 16.733 }, { true, 217.362 }, { true, 33.441 },
    { true, 33.44 }, { true, 33.44 }, { true, 33.441 }, { true, 33.44 },
    { true, 33.44 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 },
    { true, 16.721 }, { true, 33.44 }, { false, 0 }, { true, 50.161 },
    { true, 50.16 }, { false, 0 }, { true, 50.161 }, { true, 33.44 },
    { true, 16.72 }, { false, 0 }, { false, 16.72 }, { true, 66.881 },
    { false, 0 }, { true, 33.44 }, { true, 16.72 }, { true, 50.161 },
    { false, 0 }, { true, 33.538 }, { true, 33.526 }, { true, 33.447 },
    { true, 33.445 }, { true, 33.441 }, { true, 16.721 }, { true, 33.44 },
    { true, 33.44 }, { true, 50.161 }, { true, 16.72 }, { true, 33.44 },
    { true, 33.441 }, { true, 33.44 }, { false, 0 }, { false, 16.72 },
    { true, 66.881 }, { true, 16.72 }, { false, 16.72 }, { true, 50.16 },
    { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { true, 33.44 },
    { true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { false, 0 },
    { true, 33.44 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
    { true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 66.88 },
    { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
    { true, 33.441 }, { true, 33.44 }, { true, 33.44 }, { false, 0 },
    { true, 16.72 }, { true, 50.161 }, { false, 0 }, { true, 50.16 },
    { false, 0.001 }, { true, 16.721 }, { true, 66.88 }, { true, 33.44 },
    { true, 33.441 }, { true, 33.44 }, { true, 50.161 }, { true, 16.72 },
    { false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 66.881 },
    { true, 33.44 }, { true, 16.72 }, { true, 33.441 }, { false, 16.72 },
    { true, 66.88 }, { true, 16.721 }, { true, 50.16 }, { true, 33.44 },
    { true, 16.72 }, { true, 33.441 }, { true, 33.44 }, { true, 33.44 }
  };

  SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
  ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}

TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
  // Actual capturing of timing data: WebGL Acquarium demo
  // (http://webglsamples.googlecode.com/hg/aquarium/aquarium.html) which ran
  // between 55-60 FPS in the steady-state.
  static const DataPoint data_points[] = {
    { true, 16.72 }, { true, 16.72 }, { true, 4163.29 }, { true, 50.193 },
    { true, 117.041 }, { true, 50.161 }, { true, 50.16 }, { true, 33.441 },
    { true, 50.16 }, { true, 33.44 }, { false, 0 }, { false, 0 },
    { true, 50.161 }, { true, 83.601 }, { true, 50.16 }, { true, 16.72 },
    { true, 33.441 }, { false, 16.72 }, { true, 50.16 }, { true, 16.72 },
    { false, 0.001 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
    { true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
    { false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
    { true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
    { false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
    { true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
    { false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 33.44 },
    { false, 0 }, { true, 16.721 }, { true, 50.161 }, { false, 0 },
    { true, 33.44 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
    { false, 0 }, { true, 33.44 }, { false, 16.72 }, { true, 16.72 },
    { true, 50.16 }, { false, 0 }, { true, 16.721 }, { true, 33.44 },
    { false, 0 }, { true, 33.44 }, { false, 16.721 }, { true, 16.721 },
    { true, 50.161 }, { false, 0 }, { true, 16.72 }, { true, 33.44 },
    { false, 0 }, { true, 33.441 }, { false, 16.72 }, { true, 16.72 },
    { true, 50.16 }, { false, 0 }, { true, 16.72 }, { true, 33.441 },
    { true, 33.44 }, { false, 0 }, { true, 33.44 }, { true, 33.441 },
    { false, 0 }, { true, 33.44 }, { true, 33.441 }, { false, 0 },
    { true, 33.44 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
    { true, 16.721 }, { true, 50.161 }, { false, 0 }, { true, 16.72 },
    { true, 33.44 }, { true, 33.441 }, { false, 0 }, { true, 33.44 },
    { true, 33.44 }, { false, 0 }, { true, 33.441 }, { false, 16.72 },
    { true, 16.72 }, { true, 50.16 }, { false, 0 }, { true, 16.72 },
    { true, 33.441 }, { false, 0 }, { true, 33.44 }, { false, 16.72 },
    { true, 33.44 }, { false, 0 }, { true, 16.721 }, { true, 50.161 },
    { false, 0 }, { true, 16.72 }, { true, 33.44 }, { false, 0 },
    { true, 33.441 }, { false, 16.72 }, { true, 16.72 }, { true, 50.16 }
  };

  SmoothEventSampler sampler(base::TimeDelta::FromSeconds(1) / 30, true, 3);
  ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}

}  // namespace
}  // namespace content

/* [<][>][^][v][top][bottom][index][help] */