// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file contains an implementation of VideoDecodeAccelerator // that utilizes hardware video decoders, which expose Video4Linux 2 API // (http://linuxtv.org/downloads/v4l-dvb-apis/). #ifndef CONTENT_COMMON_GPU_MEDIA_V4L2_VIDEO_DECODE_ACCELERATOR_H_ #define CONTENT_COMMON_GPU_MEDIA_V4L2_VIDEO_DECODE_ACCELERATOR_H_ #include <queue> #include <vector> #include "base/callback_forward.h" #include "base/memory/linked_ptr.h" #include "base/memory/scoped_ptr.h" #include "base/synchronization/waitable_event.h" #include "base/threading/thread.h" #include "content/common/content_export.h" #include "content/common/gpu/media/v4l2_video_device.h" #include "content/common/gpu/media/video_decode_accelerator_impl.h" #include "media/base/limits.h" #include "media/base/video_decoder_config.h" #include "media/video/picture.h" #include "ui/gfx/size.h" #include "ui/gl/gl_bindings.h" namespace base { class MessageLoopProxy; } // namespace base namespace media { class H264Parser; } // namespace media namespace content { // This class handles video accelerators directly through a V4L2 device exported // by the hardware blocks. // // The threading model of this class is driven by the fact that it needs to // interface two fundamentally different event queues -- the one Chromium // provides through MessageLoop, and the one driven by the V4L2 devices which // is waited on with epoll(). There are three threads involved in this class: // // * The child thread, which is the main GPU process thread which calls the // media::VideoDecodeAccelerator entry points. Calls from this thread // generally do not block (with the exception of Initialize() and Destroy()). // They post tasks to the decoder_thread_, which actually services the task // and calls back when complete through the // media::VideoDecodeAccelerator::Client interface. // * The decoder_thread_, owned by this class. It services API tasks, through // the *Task() routines, as well as V4L2 device events, through // ServiceDeviceTask(). Almost all state modification is done on this thread // (this doesn't include buffer (re)allocation sequence, see below). // * The device_poll_thread_, owned by this class. All it does is epoll() on // the V4L2 in DevicePollTask() and schedule a ServiceDeviceTask() on the // decoder_thread_ when something interesting happens. // TODO(sheu): replace this thread with an TYPE_IO decoder_thread_. // // Note that this class has (almost) no locks, apart from the pictures_assigned_ // WaitableEvent. Everything (apart from buffer (re)allocation) is serviced on // the decoder_thread_, so there are no synchronization issues. // ... well, there are, but it's a matter of getting messages posted in the // right order, not fiddling with locks. // Buffer creation is a two-step process that is serviced partially on the // Child thread, because we need to wait for the client to provide textures // for the buffers we allocate. We cannot keep the decoder thread running while // the client allocates Pictures for us, because we need to REQBUFS first to get // the required number of output buffers from the device and that cannot be done // unless we free the previous set of buffers, leaving the decoding in a // inoperable state for the duration of the wait for Pictures. So to prevent // subtle races (esp. if we get Reset() in the meantime), we block the decoder // thread while we wait for AssignPictureBuffers from the client. class CONTENT_EXPORT V4L2VideoDecodeAccelerator : public VideoDecodeAcceleratorImpl { public: V4L2VideoDecodeAccelerator( EGLDisplay egl_display, const base::WeakPtr<Client>& io_client_, const base::Callback<bool(void)>& make_context_current, scoped_ptr<V4L2Device> device, const scoped_refptr<base::MessageLoopProxy>& io_message_loop_proxy); virtual ~V4L2VideoDecodeAccelerator(); // media::VideoDecodeAccelerator implementation. // Note: Initialize() and Destroy() are synchronous. virtual bool Initialize(media::VideoCodecProfile profile, Client* client) OVERRIDE; virtual void Decode(const media::BitstreamBuffer& bitstream_buffer) OVERRIDE; virtual void AssignPictureBuffers( const std::vector<media::PictureBuffer>& buffers) OVERRIDE; virtual void ReusePictureBuffer(int32 picture_buffer_id) OVERRIDE; virtual void Flush() OVERRIDE; virtual void Reset() OVERRIDE; virtual void Destroy() OVERRIDE; // VideoDecodeAcceleratorImpl implementation. virtual bool CanDecodeOnIOThread() OVERRIDE; private: // These are rather subjectively tuned. enum { kInputBufferCount = 8, // TODO(posciak): determine input buffer size based on level limits. // See http://crbug.com/255116. kInputBufferMaxSize = 1024 * 1024, // Number of output buffers to use for each VDA stage above what's required // by the decoder (e.g. DPB size, in H264). We need // media::limits::kMaxVideoFrames to fill up the GpuVideoDecode pipeline, // and +1 for a frame in transit. kDpbOutputBufferExtraCount = media::limits::kMaxVideoFrames + 1, }; // Internal state of the decoder. enum State { kUninitialized, // Initialize() not yet called. kInitialized, // Initialize() returned true; ready to start decoding. kDecoding, // DecodeBufferInitial() successful; decoding frames. kResetting, // Presently resetting. kAfterReset, // After Reset(), ready to start decoding again. kChangingResolution, // Performing resolution change, all remaining // pre-change frames decoded and processed. kError, // Error in kDecoding state. }; enum BufferId { kFlushBufferId = -2 // Buffer id for flush buffer, queued by FlushTask(). }; // Auto-destruction reference for BitstreamBuffer, for message-passing from // Decode() to DecodeTask(). struct BitstreamBufferRef; // Auto-destruction reference for EGLSync (for message-passing). struct EGLSyncKHRRef; // Record for decoded pictures that can be sent to PictureReady. struct PictureRecord; // Record for input buffers. struct InputRecord { InputRecord(); ~InputRecord(); bool at_device; // held by device. void* address; // mmap() address. size_t length; // mmap() length. off_t bytes_used; // bytes filled in the mmap() segment. int32 input_id; // triggering input_id as given to Decode(). }; // Record for output buffers. struct OutputRecord { OutputRecord(); ~OutputRecord(); bool at_device; // held by device. bool at_client; // held by client. EGLImageKHR egl_image; // EGLImageKHR for the output buffer. EGLSyncKHR egl_sync; // sync the compositor's use of the EGLImage. int32 picture_id; // picture buffer id as returned to PictureReady(). bool cleared; // Whether the texture is cleared and safe to render // from. See TextureManager for details. }; // // Decoding tasks, to be run on decode_thread_. // // Enqueue a BitstreamBuffer to decode. This will enqueue a buffer to the // decoder_input_queue_, then queue a DecodeBufferTask() to actually decode // the buffer. void DecodeTask(const media::BitstreamBuffer& bitstream_buffer); // Decode from the buffers queued in decoder_input_queue_. Calls // DecodeBufferInitial() or DecodeBufferContinue() as appropriate. void DecodeBufferTask(); // Advance to the next fragment that begins a frame. bool AdvanceFrameFragment(const uint8* data, size_t size, size_t* endpos); // Schedule another DecodeBufferTask() if we're behind. void ScheduleDecodeBufferTaskIfNeeded(); // Return true if we should continue to schedule DecodeBufferTask()s after // completion. Store the amount of input actually consumed in |endpos|. bool DecodeBufferInitial(const void* data, size_t size, size_t* endpos); bool DecodeBufferContinue(const void* data, size_t size); // Accumulate data for the next frame to decode. May return false in // non-error conditions; for example when pipeline is full and should be // retried later. bool AppendToInputFrame(const void* data, size_t size); // Flush data for one decoded frame. bool FlushInputFrame(); // Service I/O on the V4L2 devices. This task should only be scheduled from // DevicePollTask(). If |event_pending| is true, one or more events // on file descriptor are pending. void ServiceDeviceTask(bool event_pending); // Handle the various device queues. void Enqueue(); void Dequeue(); // Handle incoming events. void DequeueEvents(); // Enqueue a buffer on the corresponding queue. bool EnqueueInputRecord(); bool EnqueueOutputRecord(); // Process a ReusePictureBuffer() API call. The API call create an EGLSync // object on the main (GPU process) thread; we will record this object so we // can wait on it before reusing the buffer. void ReusePictureBufferTask(int32 picture_buffer_id, scoped_ptr<EGLSyncKHRRef> egl_sync_ref); // Flush() task. Child thread should not submit any more buffers until it // receives the NotifyFlushDone callback. This task will schedule an empty // BitstreamBufferRef (with input_id == kFlushBufferId) to perform the flush. void FlushTask(); // Notify the client of a flush completion, if required. This should be // called any time a relevant queue could potentially be emptied: see // function definition. void NotifyFlushDoneIfNeeded(); // Reset() task. This task will schedule a ResetDoneTask() that will send // the NotifyResetDone callback, then set the decoder state to kResetting so // that all intervening tasks will drain. void ResetTask(); // ResetDoneTask() will set the decoder state back to kAfterReset, so // subsequent decoding can continue. void ResetDoneTask(); // Device destruction task. void DestroyTask(); // Attempt to start/stop device_poll_thread_. bool StartDevicePoll(); // If |keep_input_state| is true, don't reset input state; used during // resolution change. bool StopDevicePoll(bool keep_input_state); void StartResolutionChangeIfNeeded(); void FinishResolutionChange(); // Try to get output format, detected after parsing the beginning // of the stream. Sets |again| to true if more parsing is needed. bool GetFormatInfo(struct v4l2_format* format, bool* again); // Create output buffers for the given |format|. bool CreateBuffersForFormat(const struct v4l2_format& format); // // Device tasks, to be run on device_poll_thread_. // // The device task. void DevicePollTask(bool poll_device); // // Safe from any thread. // // Error notification (using PostTask() to child thread, if necessary). void NotifyError(Error error); // Set the decoder_thread_ state (using PostTask to decoder thread, if // necessary). void SetDecoderState(State state); // // Other utility functions. Called on decoder_thread_, unless // decoder_thread_ is not yet started, in which case the child thread can call // these (e.g. in Initialize() or Destroy()). // // Create the buffers we need. bool CreateInputBuffers(); bool CreateOutputBuffers(); // // Methods run on child thread. // // Destroy buffers. void DestroyInputBuffers(); // In contrast to DestroyInputBuffers, which is called only from destructor, // we call DestroyOutputBuffers also during playback, on resolution change. // Even if anything fails along the way, we still want to go on and clean // up as much as possible, so return false if this happens, so that the // caller can error out on resolution change. bool DestroyOutputBuffers(); void ResolutionChangeDestroyBuffers(); // Send decoded pictures to PictureReady. void SendPictureReady(); // Callback that indicates a picture has been cleared. void PictureCleared(); // This method determines whether a resolution change event processing // is indeed required by returning true iff: // - width or height of the new format is different than previous format; or // - V4L2_CID_MIN_BUFFERS_FOR_CAPTURE has changed. bool IsResolutionChangeNecessary(); // Our original calling message loop for the child thread. scoped_refptr<base::MessageLoopProxy> child_message_loop_proxy_; // Message loop of the IO thread. scoped_refptr<base::MessageLoopProxy> io_message_loop_proxy_; // WeakPtr<> pointing to |this| for use in posting tasks from the decoder or // device worker threads back to the child thread. Because the worker threads // are members of this class, any task running on those threads is guaranteed // that this object is still alive. As a result, tasks posted from the child // thread to the decoder or device thread should use base::Unretained(this), // and tasks posted the other way should use |weak_this_|. base::WeakPtr<V4L2VideoDecodeAccelerator> weak_this_; // To expose client callbacks from VideoDecodeAccelerator. // NOTE: all calls to these objects *MUST* be executed on // child_message_loop_proxy_. scoped_ptr<base::WeakPtrFactory<Client> > client_ptr_factory_; base::WeakPtr<Client> client_; // Callbacks to |io_client_| must be executed on |io_message_loop_proxy_|. base::WeakPtr<Client> io_client_; // // Decoder state, owned and operated by decoder_thread_. // Before decoder_thread_ has started, the decoder state is managed by // the child (main) thread. After decoder_thread_ has started, the decoder // thread should be the only one managing these. // // This thread services tasks posted from the VDA API entry points by the // child thread and device service callbacks posted from the device thread. base::Thread decoder_thread_; // Decoder state machine state. State decoder_state_; // BitstreamBuffer we're presently reading. scoped_ptr<BitstreamBufferRef> decoder_current_bitstream_buffer_; // The V4L2Device this class is operating upon. scoped_ptr<V4L2Device> device_; // FlushTask() and ResetTask() should not affect buffers that have been // queued afterwards. For flushing or resetting the pipeline then, we will // delay these buffers until after the flush or reset completes. int decoder_delay_bitstream_buffer_id_; // Input buffer we're presently filling. int decoder_current_input_buffer_; // We track the number of buffer decode tasks we have scheduled, since each // task execution should complete one buffer. If we fall behind (due to // resource backpressure, etc.), we'll have to schedule more to catch up. int decoder_decode_buffer_tasks_scheduled_; // Picture buffers held by the client. int decoder_frames_at_client_; // Are we flushing? bool decoder_flushing_; // Got a notification from driver that it reached resolution change point // in the stream. bool resolution_change_pending_; // Got a reset request while we were performing resolution change. bool resolution_change_reset_pending_; // Input queue for decoder_thread_: BitstreamBuffers in. std::queue<linked_ptr<BitstreamBufferRef> > decoder_input_queue_; // For H264 decode, hardware requires that we send it frame-sized chunks. // We'll need to parse the stream. scoped_ptr<media::H264Parser> decoder_h264_parser_; // Set if the decoder has a pending incomplete frame in an input buffer. bool decoder_partial_frame_pending_; // // Hardware state and associated queues. Since decoder_thread_ services // the hardware, decoder_thread_ owns these too. // output_buffer_map_, free_output_buffers_ and output_planes_count_ are an // exception during the buffer (re)allocation sequence, when the // decoder_thread_ is blocked briefly while the Child thread manipulates // them. // // Completed decode buffers. std::queue<int> input_ready_queue_; // Input buffer state. bool input_streamon_; // Input buffers enqueued to device. int input_buffer_queued_count_; // Input buffers ready to use, as a LIFO since we don't care about ordering. std::vector<int> free_input_buffers_; // Mapping of int index to input buffer record. std::vector<InputRecord> input_buffer_map_; // Output buffer state. bool output_streamon_; // Output buffers enqueued to device. int output_buffer_queued_count_; // Output buffers ready to use, as a FIFO since we want oldest-first to hide // synchronization latency with GL. std::queue<int> free_output_buffers_; // Mapping of int index to output buffer record. std::vector<OutputRecord> output_buffer_map_; // Output pixel format. uint32 output_buffer_pixelformat_; // Required size of DPB for decoding. int output_dpb_size_; // Stores the number of planes (i.e. separate memory buffers) for output. size_t output_planes_count_; // Pictures that are ready but not sent to PictureReady yet. std::queue<PictureRecord> pending_picture_ready_; // The number of pictures that are sent to PictureReady and will be cleared. int picture_clearing_count_; // Used by the decoder thread to wait for AssignPictureBuffers to arrive // to avoid races with potential Reset requests. base::WaitableEvent pictures_assigned_; // Output picture size. gfx::Size frame_buffer_size_; // // The device polling thread handles notifications of V4L2 device changes. // // The thread. base::Thread device_poll_thread_; // // Other state, held by the child (main) thread. // // Make our context current before running any EGL entry points. base::Callback<bool(void)> make_context_current_; // EGL state EGLDisplay egl_display_; // The codec we'll be decoding for. media::VideoCodecProfile video_profile_; // The WeakPtrFactory for |weak_this_|. base::WeakPtrFactory<V4L2VideoDecodeAccelerator> weak_this_factory_; DISALLOW_COPY_AND_ASSIGN(V4L2VideoDecodeAccelerator); }; } // namespace content #endif // CONTENT_COMMON_GPU_MEDIA_V4L2_VIDEO_DECODE_ACCELERATOR_H_