root/libswscale/swscale.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. swscale_version
  2. sws_format_name
  3. yuv2yuvXinC
  4. yuv2nv12XinC
  5. yuv2packedXinC
  6. yuv2rgbXinC_full
  7. getSplineCoeff
  8. initFilter
  9. initMMX2HScaler
  10. globalInit
  11. getSwsFunc
  12. PlanarToNV12Wrapper
  13. PlanarToYuy2Wrapper
  14. PlanarToUyvyWrapper
  15. YUV422PToYuy2Wrapper
  16. YUV422PToUyvyWrapper
  17. pal2rgbWrapper
  18. rgb2rgbWrapper
  19. bgr24toyv12Wrapper
  20. yvu9toyv12Wrapper
  21. packedCopy
  22. planarCopy
  23. gray16togray
  24. graytogray16
  25. gray16swap
  26. getSubSampleFactors
  27. roundToInt16
  28. sws_setColorspaceDetails
  29. sws_getColorspaceDetails
  30. handle_jpeg
  31. sws_getContext
  32. sws_scale
  33. sws_scale_ordered
  34. sws_getDefaultFilter
  35. sws_getGaussianVec
  36. sws_getConstVec
  37. sws_getIdentityVec
  38. sws_dcVec
  39. sws_scaleVec
  40. sws_normalizeVec
  41. sws_getConvVec
  42. sws_sumVec
  43. sws_diffVec
  44. sws_getShiftedVec
  45. sws_shiftVec
  46. sws_addVec
  47. sws_subVec
  48. sws_convVec
  49. sws_cloneVec
  50. sws_printVec2
  51. sws_printVec
  52. sws_freeVec
  53. sws_freeFilter
  54. sws_freeContext
  55. sws_getCachedContext

/*
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * the C code (not assembly, mmx, ...) of this file can be used
 * under the LGPL license too
 */

/*
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  {BGR,RGB}{1,4,8,15,16} support dithering

  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  x -> x
  YUV9 -> YV12
  YUV9/YV12 -> Y800
  Y800 -> YUV9/YV12
  BGR24 -> BGR32 & RGB24 -> RGB32
  BGR32 -> BGR24 & RGB32 -> RGB24
  BGR15 -> BGR16
*/

/*
tested special converters (most are tested actually, but I did not write it down ...)
 YV12 -> BGR16
 YV12 -> YV12
 BGR15 -> BGR16
 BGR16 -> BGR16
 YVU9 -> YV12

untested special converters
  YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  YV12/I420 -> YV12/I420
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  BGR24 -> BGR32 & RGB24 -> RGB32
  BGR32 -> BGR24 & RGB32 -> RGB24
  BGR24 -> YV12
*/

#define _SVID_SOURCE //needed for MAP_ANONYMOUS
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>
#include "config.h"
#include <assert.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#include "swscale.h"
#include "swscale_internal.h"
#include "rgb2rgb.h"
#include "libavutil/x86_cpu.h"
#include "libavutil/bswap.h"

unsigned swscale_version(void)
{
    return LIBSWSCALE_VERSION_INT;
}

#undef MOVNTQ
#undef PAVGB

//#undef HAVE_MMX2
//#define HAVE_AMD3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
//#define WORDS_BIGENDIAN
#define DITHER1XBPP

#define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit

#define RET 0xC3 //near return opcode for x86

#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif

#define isSupportedIn(x)    (       \
           (x)==PIX_FMT_YUV420P     \
        || (x)==PIX_FMT_YUVA420P    \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || (x)==PIX_FMT_RGB32       \
        || (x)==PIX_FMT_RGB32_1     \
        || (x)==PIX_FMT_BGR24       \
        || (x)==PIX_FMT_BGR565      \
        || (x)==PIX_FMT_BGR555      \
        || (x)==PIX_FMT_BGR32       \
        || (x)==PIX_FMT_BGR32_1     \
        || (x)==PIX_FMT_RGB24       \
        || (x)==PIX_FMT_RGB565      \
        || (x)==PIX_FMT_RGB555      \
        || (x)==PIX_FMT_GRAY8       \
        || (x)==PIX_FMT_YUV410P     \
        || (x)==PIX_FMT_YUV440P     \
        || (x)==PIX_FMT_GRAY16BE    \
        || (x)==PIX_FMT_GRAY16LE    \
        || (x)==PIX_FMT_YUV444P     \
        || (x)==PIX_FMT_YUV422P     \
        || (x)==PIX_FMT_YUV411P     \
        || (x)==PIX_FMT_PAL8        \
        || (x)==PIX_FMT_BGR8        \
        || (x)==PIX_FMT_RGB8        \
        || (x)==PIX_FMT_BGR4_BYTE   \
        || (x)==PIX_FMT_RGB4_BYTE   \
        || (x)==PIX_FMT_YUV440P     \
        || (x)==PIX_FMT_MONOWHITE   \
        || (x)==PIX_FMT_MONOBLACK   \
    )
#define isSupportedOut(x)   (       \
           (x)==PIX_FMT_YUV420P     \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || (x)==PIX_FMT_YUV444P     \
        || (x)==PIX_FMT_YUV422P     \
        || (x)==PIX_FMT_YUV411P     \
        || isRGB(x)                 \
        || isBGR(x)                 \
        || (x)==PIX_FMT_NV12        \
        || (x)==PIX_FMT_NV21        \
        || (x)==PIX_FMT_GRAY16BE    \
        || (x)==PIX_FMT_GRAY16LE    \
        || (x)==PIX_FMT_GRAY8       \
        || (x)==PIX_FMT_YUV410P     \
        || (x)==PIX_FMT_YUV440P     \
    )
#define isPacked(x)         (       \
           (x)==PIX_FMT_PAL8        \
        || (x)==PIX_FMT_YUYV422     \
        || (x)==PIX_FMT_UYVY422     \
        || isRGB(x)                 \
        || isBGR(x)                 \
    )
#define usePal(x)           (       \
           (x)==PIX_FMT_PAL8        \
        || (x)==PIX_FMT_BGR4_BYTE   \
        || (x)==PIX_FMT_RGB4_BYTE   \
        || (x)==PIX_FMT_BGR8        \
        || (x)==PIX_FMT_RGB8        \
    )

#define RGB2YUV_SHIFT 15
#define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
#define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))

extern const int32_t ff_yuv2rgb_coeffs[8][4];

static const double rgb2yuv_table[8][9]={
    {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
    {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
    {0.59  , 0.11  , 0.30  , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
    {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
    {0.701 , 0.087 , 0.212 , -0.384, 0.5  -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
};

/*
NOTES
Special versions: fast Y 1:1 scaling (no interpolation in y direction)

TODO
more intelligent misalignment avoidance for the horizontal scaler
write special vertical cubic upscale version
optimize C code (YV12 / minmax)
add support for packed pixel YUV input & output
add support for Y8 output
optimize BGR24 & BGR32
add BGR4 output support
write special BGR->BGR scaler
*/

#if ARCH_X86 && CONFIG_GPL
DECLARE_ASM_CONST(8, uint64_t, bF8)=       0xF8F8F8F8F8F8F8F8LL;
DECLARE_ASM_CONST(8, uint64_t, bFC)=       0xFCFCFCFCFCFCFCFCLL;
DECLARE_ASM_CONST(8, uint64_t, w10)=       0x0010001000100010LL;
DECLARE_ASM_CONST(8, uint64_t, w02)=       0x0002000200020002LL;
DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;

const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
        0x0103010301030103LL,
        0x0200020002000200LL,};

const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
        0x0602060206020602LL,
        0x0004000400040004LL,};

DECLARE_ASM_CONST(8, uint64_t, b16Mask)=   0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g16Mask)=   0x07E007E007E007E0LL;
DECLARE_ASM_CONST(8, uint64_t, r16Mask)=   0xF800F800F800F800LL;
DECLARE_ASM_CONST(8, uint64_t, b15Mask)=   0x001F001F001F001FLL;
DECLARE_ASM_CONST(8, uint64_t, g15Mask)=   0x03E003E003E003E0LL;
DECLARE_ASM_CONST(8, uint64_t, r15Mask)=   0x7C007C007C007C00LL;

DECLARE_ALIGNED(8, const uint64_t, ff_M24A)         = 0x00FF0000FF0000FFLL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24B)         = 0xFF0000FF0000FF00LL;
DECLARE_ALIGNED(8, const uint64_t, ff_M24C)         = 0x0000FF0000FF0000LL;

#ifdef FAST_BGR2YV12
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000000210041000DULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000FFEEFFDC0038ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00000038FFD2FFF8ULL;
#else
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000020E540830C8BULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000ED0FDAC23831ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00003831D0E6F6EAULL;
#endif /* FAST_BGR2YV12 */
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset)  = 0x1010101010101010ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
DECLARE_ALIGNED(8, const uint64_t, ff_w1111)        = 0x0001000100010001ULL;

DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;

DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
    {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
    {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
};

DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;

#endif /* ARCH_X86 && CONFIG_GPL */

// clipping helper table for C implementations:
static unsigned char clip_table[768];

static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);

static const uint8_t  __attribute__((aligned(8))) dither_2x2_4[2][8]={
{  1,   3,   1,   3,   1,   3,   1,   3, },
{  2,   0,   2,   0,   2,   0,   2,   0, },
};

static const uint8_t  __attribute__((aligned(8))) dither_2x2_8[2][8]={
{  6,   2,   6,   2,   6,   2,   6,   2, },
{  0,   4,   0,   4,   0,   4,   0,   4, },
};

const uint8_t  __attribute__((aligned(8))) dither_8x8_32[8][8]={
{ 17,   9,  23,  15,  16,   8,  22,  14, },
{  5,  29,   3,  27,   4,  28,   2,  26, },
{ 21,  13,  19,  11,  20,  12,  18,  10, },
{  0,  24,   6,  30,   1,  25,   7,  31, },
{ 16,   8,  22,  14,  17,   9,  23,  15, },
{  4,  28,   2,  26,   5,  29,   3,  27, },
{ 20,  12,  18,  10,  21,  13,  19,  11, },
{  1,  25,   7,  31,   0,  24,   6,  30, },
};

#if 0
const uint8_t  __attribute__((aligned(8))) dither_8x8_64[8][8]={
{  0,  48,  12,  60,   3,  51,  15,  63, },
{ 32,  16,  44,  28,  35,  19,  47,  31, },
{  8,  56,   4,  52,  11,  59,   7,  55, },
{ 40,  24,  36,  20,  43,  27,  39,  23, },
{  2,  50,  14,  62,   1,  49,  13,  61, },
{ 34,  18,  46,  30,  33,  17,  45,  29, },
{ 10,  58,   6,  54,   9,  57,   5,  53, },
{ 42,  26,  38,  22,  41,  25,  37,  21, },
};
#endif

const uint8_t  __attribute__((aligned(8))) dither_8x8_73[8][8]={
{  0,  55,  14,  68,   3,  58,  17,  72, },
{ 37,  18,  50,  32,  40,  22,  54,  35, },
{  9,  64,   5,  59,  13,  67,   8,  63, },
{ 46,  27,  41,  23,  49,  31,  44,  26, },
{  2,  57,  16,  71,   1,  56,  15,  70, },
{ 39,  21,  52,  34,  38,  19,  51,  33, },
{ 11,  66,   7,  62,  10,  65,   6,  60, },
{ 48,  30,  43,  25,  47,  29,  42,  24, },
};

#if 0
const uint8_t  __attribute__((aligned(8))) dither_8x8_128[8][8]={
{ 68,  36,  92,  60,  66,  34,  90,  58, },
{ 20, 116,  12, 108,  18, 114,  10, 106, },
{ 84,  52,  76,  44,  82,  50,  74,  42, },
{  0,  96,  24, 120,   6, 102,  30, 126, },
{ 64,  32,  88,  56,  70,  38,  94,  62, },
{ 16, 112,   8, 104,  22, 118,  14, 110, },
{ 80,  48,  72,  40,  86,  54,  78,  46, },
{  4, 100,  28, 124,   2,  98,  26, 122, },
};
#endif

#if 1
const uint8_t  __attribute__((aligned(8))) dither_8x8_220[8][8]={
{117,  62, 158, 103, 113,  58, 155, 100, },
{ 34, 199,  21, 186,  31, 196,  17, 182, },
{144,  89, 131,  76, 141,  86, 127,  72, },
{  0, 165,  41, 206,  10, 175,  52, 217, },
{110,  55, 151,  96, 120,  65, 162, 107, },
{ 28, 193,  14, 179,  38, 203,  24, 189, },
{138,  83, 124,  69, 148,  93, 134,  79, },
{  7, 172,  48, 213,   3, 168,  45, 210, },
};
#elif 1
// tries to correct a gamma of 1.5
const uint8_t  __attribute__((aligned(8))) dither_8x8_220[8][8]={
{  0, 143,  18, 200,   2, 156,  25, 215, },
{ 78,  28, 125,  64,  89,  36, 138,  74, },
{ 10, 180,   3, 161,  16, 195,   8, 175, },
{109,  51,  93,  38, 121,  60, 105,  47, },
{  1, 152,  23, 210,   0, 147,  20, 205, },
{ 85,  33, 134,  71,  81,  30, 130,  67, },
{ 14, 190,   6, 171,  12, 185,   5, 166, },
{117,  57, 101,  44, 113,  54,  97,  41, },
};
#elif 1
// tries to correct a gamma of 2.0
const uint8_t  __attribute__((aligned(8))) dither_8x8_220[8][8]={
{  0, 124,   8, 193,   0, 140,  12, 213, },
{ 55,  14, 104,  42,  66,  19, 119,  52, },
{  3, 168,   1, 145,   6, 187,   3, 162, },
{ 86,  31,  70,  21,  99,  39,  82,  28, },
{  0, 134,  11, 206,   0, 129,   9, 200, },
{ 62,  17, 114,  48,  58,  16, 109,  45, },
{  5, 181,   2, 157,   4, 175,   1, 151, },
{ 95,  36,  78,  26,  90,  34,  74,  24, },
};
#else
// tries to correct a gamma of 2.5
const uint8_t  __attribute__((aligned(8))) dither_8x8_220[8][8]={
{  0, 107,   3, 187,   0, 125,   6, 212, },
{ 39,   7,  86,  28,  49,  11, 102,  36, },
{  1, 158,   0, 131,   3, 180,   1, 151, },
{ 68,  19,  52,  12,  81,  25,  64,  17, },
{  0, 119,   5, 203,   0, 113,   4, 195, },
{ 45,   9,  96,  33,  42,   8,  91,  30, },
{  2, 172,   1, 144,   2, 165,   0, 137, },
{ 77,  23,  60,  15,  72,  21,  56,  14, },
};
#endif

const char *sws_format_name(enum PixelFormat format)
{
    switch (format) {
        case PIX_FMT_YUV420P:
            return "yuv420p";
        case PIX_FMT_YUVA420P:
            return "yuva420p";
        case PIX_FMT_YUYV422:
            return "yuyv422";
        case PIX_FMT_RGB24:
            return "rgb24";
        case PIX_FMT_BGR24:
            return "bgr24";
        case PIX_FMT_YUV422P:
            return "yuv422p";
        case PIX_FMT_YUV444P:
            return "yuv444p";
        case PIX_FMT_RGB32:
            return "rgb32";
        case PIX_FMT_YUV410P:
            return "yuv410p";
        case PIX_FMT_YUV411P:
            return "yuv411p";
        case PIX_FMT_RGB565:
            return "rgb565";
        case PIX_FMT_RGB555:
            return "rgb555";
        case PIX_FMT_GRAY16BE:
            return "gray16be";
        case PIX_FMT_GRAY16LE:
            return "gray16le";
        case PIX_FMT_GRAY8:
            return "gray8";
        case PIX_FMT_MONOWHITE:
            return "mono white";
        case PIX_FMT_MONOBLACK:
            return "mono black";
        case PIX_FMT_PAL8:
            return "Palette";
        case PIX_FMT_YUVJ420P:
            return "yuvj420p";
        case PIX_FMT_YUVJ422P:
            return "yuvj422p";
        case PIX_FMT_YUVJ444P:
            return "yuvj444p";
        case PIX_FMT_XVMC_MPEG2_MC:
            return "xvmc_mpeg2_mc";
        case PIX_FMT_XVMC_MPEG2_IDCT:
            return "xvmc_mpeg2_idct";
        case PIX_FMT_UYVY422:
            return "uyvy422";
        case PIX_FMT_UYYVYY411:
            return "uyyvyy411";
        case PIX_FMT_RGB32_1:
            return "rgb32x";
        case PIX_FMT_BGR32_1:
            return "bgr32x";
        case PIX_FMT_BGR32:
            return "bgr32";
        case PIX_FMT_BGR565:
            return "bgr565";
        case PIX_FMT_BGR555:
            return "bgr555";
        case PIX_FMT_BGR8:
            return "bgr8";
        case PIX_FMT_BGR4:
            return "bgr4";
        case PIX_FMT_BGR4_BYTE:
            return "bgr4 byte";
        case PIX_FMT_RGB8:
            return "rgb8";
        case PIX_FMT_RGB4:
            return "rgb4";
        case PIX_FMT_RGB4_BYTE:
            return "rgb4 byte";
        case PIX_FMT_NV12:
            return "nv12";
        case PIX_FMT_NV21:
            return "nv21";
        case PIX_FMT_YUV440P:
            return "yuv440p";
        case PIX_FMT_VDPAU_H264:
            return "vdpau_h264";
        case PIX_FMT_VDPAU_MPEG1:
            return "vdpau_mpeg1";
        case PIX_FMT_VDPAU_MPEG2:
            return "vdpau_mpeg2";
        case PIX_FMT_VDPAU_WMV3:
            return "vdpau_wmv3";
        case PIX_FMT_VDPAU_VC1:
            return "vdpau_vc1";
        default:
            return "Unknown format";
    }
}

static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                               int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                               uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
{
    //FIXME Optimize (just quickly written not optimized..)
    int i;
    for (i=0; i<dstW; i++)
    {
        int val=1<<18;
        int j;
        for (j=0; j<lumFilterSize; j++)
            val += lumSrc[j][i] * lumFilter[j];

        dest[i]= av_clip_uint8(val>>19);
    }

    if (uDest)
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + VOFW] * chrFilter[j];
            }

            uDest[i]= av_clip_uint8(u>>19);
            vDest[i]= av_clip_uint8(v>>19);
        }
}

static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
{
    //FIXME Optimize (just quickly written not optimized..)
    int i;
    for (i=0; i<dstW; i++)
    {
        int val=1<<18;
        int j;
        for (j=0; j<lumFilterSize; j++)
            val += lumSrc[j][i] * lumFilter[j];

        dest[i]= av_clip_uint8(val>>19);
    }

    if (!uDest)
        return;

    if (dstFormat == PIX_FMT_NV12)
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + VOFW] * chrFilter[j];
            }

            uDest[2*i]= av_clip_uint8(u>>19);
            uDest[2*i+1]= av_clip_uint8(v>>19);
        }
    else
        for (i=0; i<chrDstW; i++)
        {
            int u=1<<18;
            int v=1<<18;
            int j;
            for (j=0; j<chrFilterSize; j++)
            {
                u += chrSrc[j][i] * chrFilter[j];
                v += chrSrc[j][i + VOFW] * chrFilter[j];
            }

            uDest[2*i]= av_clip_uint8(v>>19);
            uDest[2*i+1]= av_clip_uint8(u>>19);
        }
}

#define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
    for (i=0; i<(dstW>>1); i++){\
        int j;\
        int Y1 = 1<<18;\
        int Y2 = 1<<18;\
        int U  = 1<<18;\
        int V  = 1<<18;\
        type av_unused *r, *b, *g;\
        const int i2= 2*i;\
        \
        for (j=0; j<lumFilterSize; j++)\
        {\
            Y1 += lumSrc[j][i2] * lumFilter[j];\
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
        }\
        for (j=0; j<chrFilterSize; j++)\
        {\
            U += chrSrc[j][i] * chrFilter[j];\
            V += chrSrc[j][i+VOFW] * chrFilter[j];\
        }\
        Y1>>=19;\
        Y2>>=19;\
        U >>=19;\
        V >>=19;\

#define YSCALE_YUV_2_PACKEDX_C(type) \
        YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
        if ((Y1|Y2|U|V)&256)\
        {\
            if (Y1>255)   Y1=255; \
            else if (Y1<0)Y1=0;   \
            if (Y2>255)   Y2=255; \
            else if (Y2<0)Y2=0;   \
            if (U>255)    U=255;  \
            else if (U<0) U=0;    \
            if (V>255)    V=255;  \
            else if (V<0) V=0;    \
        }

#define YSCALE_YUV_2_PACKEDX_FULL_C \
    for (i=0; i<dstW; i++){\
        int j;\
        int Y = 0;\
        int U = -128<<19;\
        int V = -128<<19;\
        int R,G,B;\
        \
        for (j=0; j<lumFilterSize; j++){\
            Y += lumSrc[j][i     ] * lumFilter[j];\
        }\
        for (j=0; j<chrFilterSize; j++){\
            U += chrSrc[j][i     ] * chrFilter[j];\
            V += chrSrc[j][i+VOFW] * chrFilter[j];\
        }\
        Y >>=10;\
        U >>=10;\
        V >>=10;\

#define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
    YSCALE_YUV_2_PACKEDX_FULL_C\
        Y-= c->yuv2rgb_y_offset;\
        Y*= c->yuv2rgb_y_coeff;\
        Y+= rnd;\
        R= Y + V*c->yuv2rgb_v2r_coeff;\
        G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
        B= Y +                          U*c->yuv2rgb_u2b_coeff;\
        if ((R|G|B)&(0xC0000000)){\
            if (R>=(256<<22))   R=(256<<22)-1; \
            else if (R<0)R=0;   \
            if (G>=(256<<22))   G=(256<<22)-1; \
            else if (G<0)G=0;   \
            if (B>=(256<<22))   B=(256<<22)-1; \
            else if (B<0)B=0;   \
        }\


#define YSCALE_YUV_2_GRAY16_C \
    for (i=0; i<(dstW>>1); i++){\
        int j;\
        int Y1 = 1<<18;\
        int Y2 = 1<<18;\
        int U  = 1<<18;\
        int V  = 1<<18;\
        \
        const int i2= 2*i;\
        \
        for (j=0; j<lumFilterSize; j++)\
        {\
            Y1 += lumSrc[j][i2] * lumFilter[j];\
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
        }\
        Y1>>=11;\
        Y2>>=11;\
        if ((Y1|Y2|U|V)&65536)\
        {\
            if (Y1>65535)   Y1=65535; \
            else if (Y1<0)Y1=0;   \
            if (Y2>65535)   Y2=65535; \
            else if (Y2<0)Y2=0;   \
        }

#define YSCALE_YUV_2_RGBX_C(type) \
    YSCALE_YUV_2_PACKEDX_C(type)  /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
    r = (type *)c->table_rV[V];   \
    g = (type *)(c->table_gU[U] + c->table_gV[V]); \
    b = (type *)c->table_bU[U];   \

#define YSCALE_YUV_2_PACKED2_C   \
    for (i=0; i<(dstW>>1); i++){ \
        const int i2= 2*i;       \
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;           \
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;           \
        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;  \
        int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19;  \

#define YSCALE_YUV_2_GRAY16_2_C   \
    for (i=0; i<(dstW>>1); i++){ \
        const int i2= 2*i;       \
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>11;           \
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11;           \

#define YSCALE_YUV_2_RGB2_C(type) \
    YSCALE_YUV_2_PACKED2_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_PACKED1_C \
    for (i=0; i<(dstW>>1); i++){\
        const int i2= 2*i;\
        int Y1= buf0[i2  ]>>7;\
        int Y2= buf0[i2+1]>>7;\
        int U= (uvbuf1[i     ])>>7;\
        int V= (uvbuf1[i+VOFW])>>7;\

#define YSCALE_YUV_2_GRAY16_1_C \
    for (i=0; i<(dstW>>1); i++){\
        const int i2= 2*i;\
        int Y1= buf0[i2  ]<<1;\
        int Y2= buf0[i2+1]<<1;\

#define YSCALE_YUV_2_RGB1_C(type) \
    YSCALE_YUV_2_PACKED1_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_PACKED1B_C \
    for (i=0; i<(dstW>>1); i++){\
        const int i2= 2*i;\
        int Y1= buf0[i2  ]>>7;\
        int Y2= buf0[i2+1]>>7;\
        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
        int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\

#define YSCALE_YUV_2_RGB1B_C(type) \
    YSCALE_YUV_2_PACKED1B_C\
    type *r, *b, *g;\
    r = (type *)c->table_rV[V];\
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
    b = (type *)c->table_bU[U];\

#define YSCALE_YUV_2_MONO2_C \
    const uint8_t * const d128=dither_8x8_220[y&7];\
    uint8_t *g= c->table_gU[128] + c->table_gV[128];\
    for (i=0; i<dstW-7; i+=8){\
        int acc;\
        acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
        acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
        acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
        acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
        acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
        acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
        acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
        acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
        ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
        dest++;\
    }\


#define YSCALE_YUV_2_MONOX_C \
    const uint8_t * const d128=dither_8x8_220[y&7];\
    uint8_t *g= c->table_gU[128] + c->table_gV[128];\
    int acc=0;\
    for (i=0; i<dstW-1; i+=2){\
        int j;\
        int Y1=1<<18;\
        int Y2=1<<18;\
\
        for (j=0; j<lumFilterSize; j++)\
        {\
            Y1 += lumSrc[j][i] * lumFilter[j];\
            Y2 += lumSrc[j][i+1] * lumFilter[j];\
        }\
        Y1>>=19;\
        Y2>>=19;\
        if ((Y1|Y2)&256)\
        {\
            if (Y1>255)   Y1=255;\
            else if (Y1<0)Y1=0;\
            if (Y2>255)   Y2=255;\
            else if (Y2<0)Y2=0;\
        }\
        acc+= acc + g[Y1+d128[(i+0)&7]];\
        acc+= acc + g[Y2+d128[(i+1)&7]];\
        if ((i&7)==6){\
            ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
            dest++;\
        }\
    }


#define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
    switch(c->dstFormat)\
    {\
    case PIX_FMT_RGB32:\
    case PIX_FMT_BGR32:\
    case PIX_FMT_RGB32_1:\
    case PIX_FMT_BGR32_1:\
        func(uint32_t)\
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
        }                \
        break;\
    case PIX_FMT_RGB24:\
        func(uint8_t)\
            ((uint8_t*)dest)[0]= r[Y1];\
            ((uint8_t*)dest)[1]= g[Y1];\
            ((uint8_t*)dest)[2]= b[Y1];\
            ((uint8_t*)dest)[3]= r[Y2];\
            ((uint8_t*)dest)[4]= g[Y2];\
            ((uint8_t*)dest)[5]= b[Y2];\
            dest+=6;\
        }\
        break;\
    case PIX_FMT_BGR24:\
        func(uint8_t)\
            ((uint8_t*)dest)[0]= b[Y1];\
            ((uint8_t*)dest)[1]= g[Y1];\
            ((uint8_t*)dest)[2]= r[Y1];\
            ((uint8_t*)dest)[3]= b[Y2];\
            ((uint8_t*)dest)[4]= g[Y2];\
            ((uint8_t*)dest)[5]= r[Y2];\
            dest+=6;\
        }\
        break;\
    case PIX_FMT_RGB565:\
    case PIX_FMT_BGR565:\
        {\
            const int dr1= dither_2x2_8[y&1    ][0];\
            const int dg1= dither_2x2_4[y&1    ][0];\
            const int db1= dither_2x2_8[(y&1)^1][0];\
            const int dr2= dither_2x2_8[y&1    ][1];\
            const int dg2= dither_2x2_4[y&1    ][1];\
            const int db2= dither_2x2_8[(y&1)^1][1];\
            func(uint16_t)\
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
            }\
        }\
        break;\
    case PIX_FMT_RGB555:\
    case PIX_FMT_BGR555:\
        {\
            const int dr1= dither_2x2_8[y&1    ][0];\
            const int dg1= dither_2x2_8[y&1    ][1];\
            const int db1= dither_2x2_8[(y&1)^1][0];\
            const int dr2= dither_2x2_8[y&1    ][1];\
            const int dg2= dither_2x2_8[y&1    ][0];\
            const int db2= dither_2x2_8[(y&1)^1][1];\
            func(uint16_t)\
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
            }\
        }\
        break;\
    case PIX_FMT_RGB8:\
    case PIX_FMT_BGR8:\
        {\
            const uint8_t * const d64= dither_8x8_73[y&7];\
            const uint8_t * const d32= dither_8x8_32[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
            }\
        }\
        break;\
    case PIX_FMT_RGB4:\
    case PIX_FMT_BGR4:\
        {\
            const uint8_t * const d64= dither_8x8_73 [y&7];\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
            }\
        }\
        break;\
    case PIX_FMT_RGB4_BYTE:\
    case PIX_FMT_BGR4_BYTE:\
        {\
            const uint8_t * const d64= dither_8x8_73 [y&7];\
            const uint8_t * const d128=dither_8x8_220[y&7];\
            func(uint8_t)\
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
            }\
        }\
        break;\
    case PIX_FMT_MONOBLACK:\
    case PIX_FMT_MONOWHITE:\
        {\
            func_monoblack\
        }\
        break;\
    case PIX_FMT_YUYV422:\
        func2\
            ((uint8_t*)dest)[2*i2+0]= Y1;\
            ((uint8_t*)dest)[2*i2+1]= U;\
            ((uint8_t*)dest)[2*i2+2]= Y2;\
            ((uint8_t*)dest)[2*i2+3]= V;\
        }                \
        break;\
    case PIX_FMT_UYVY422:\
        func2\
            ((uint8_t*)dest)[2*i2+0]= U;\
            ((uint8_t*)dest)[2*i2+1]= Y1;\
            ((uint8_t*)dest)[2*i2+2]= V;\
            ((uint8_t*)dest)[2*i2+3]= Y2;\
        }                \
        break;\
    case PIX_FMT_GRAY16BE:\
        func_g16\
            ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
            ((uint8_t*)dest)[2*i2+1]= Y1;\
            ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
            ((uint8_t*)dest)[2*i2+3]= Y2;\
        }                \
        break;\
    case PIX_FMT_GRAY16LE:\
        func_g16\
            ((uint8_t*)dest)[2*i2+0]= Y1;\
            ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
            ((uint8_t*)dest)[2*i2+2]= Y2;\
            ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
        }                \
        break;\
    }\


static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                                  int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                                  uint8_t *dest, int dstW, int y)
{
    int i;
    YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
}

static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
                                    uint8_t *dest, int dstW, int y)
{
    int i;
    int step= fmt_depth(c->dstFormat)/8;
    int aidx= 3;

    switch(c->dstFormat){
    case PIX_FMT_ARGB:
        dest++;
        aidx= -1;
    case PIX_FMT_RGB24:
        aidx--;
    case PIX_FMT_RGBA:
        YSCALE_YUV_2_RGBX_FULL_C(1<<21)
            dest[aidx]= 255;
            dest[0]= R>>22;
            dest[1]= G>>22;
            dest[2]= B>>22;
            dest+= step;
        }
        break;
    case PIX_FMT_ABGR:
        dest++;
        aidx= -1;
    case PIX_FMT_BGR24:
        aidx--;
    case PIX_FMT_BGRA:
        YSCALE_YUV_2_RGBX_FULL_C(1<<21)
            dest[aidx]= 255;
            dest[0]= B>>22;
            dest[1]= G>>22;
            dest[2]= R>>22;
            dest+= step;
        }
        break;
    default:
        assert(0);
    }
}

//Note: we have C, X86, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
//Plain C versions
#if ((!HAVE_MMX || !CONFIG_GPL) && !HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT
#define COMPILE_C
#endif

#if ARCH_PPC
#if HAVE_ALTIVEC
#define COMPILE_ALTIVEC
#endif
#endif //ARCH_PPC

#if ARCH_X86

#if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_MMX
#endif

#if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_MMX2
#endif

#if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
#define COMPILE_3DNOW
#endif
#endif //ARCH_X86

#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#undef HAVE_ALTIVEC
#define HAVE_MMX 0
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 0
#define HAVE_ALTIVEC 0

#ifdef COMPILE_C
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif

#ifdef COMPILE_ALTIVEC
#undef RENAME
#undef HAVE_ALTIVEC
#define HAVE_ALTIVEC 1
#define RENAME(a) a ## _altivec
#include "swscale_template.c"
#endif

#if ARCH_X86

//x86 versions
/*
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define ARCH_X86
#define RENAME(a) a ## _X86
#include "swscale_template.c"
*/
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 0
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif

//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 1
#define HAVE_AMD3DNOW 0
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif

//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_AMD3DNOW
#define HAVE_MMX 1
#define HAVE_MMX2 0
#define HAVE_AMD3DNOW 1
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif

#endif //ARCH_X86

// minor note: the HAVE_xyz are messed up after this line so don't use them

static double getSplineCoeff(double a, double b, double c, double d, double dist)
{
//    printf("%f %f %f %f %f\n", a,b,c,d,dist);
    if (dist<=1.0)      return ((d*dist + c)*dist + b)*dist +a;
    else                return getSplineCoeff(        0.0,
                                             b+ 2.0*c + 3.0*d,
                                                    c + 3.0*d,
                                            -b- 3.0*c - 6.0*d,
                                            dist-1.0);
}

static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
                             int srcW, int dstW, int filterAlign, int one, int flags,
                             SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
{
    int i;
    int filterSize;
    int filter2Size;
    int minFilterSize;
    int64_t *filter=NULL;
    int64_t *filter2=NULL;
    const int64_t fone= 1LL<<54;
    int ret= -1;
#if ARCH_X86
    if (flags & SWS_CPU_CAPS_MMX)
        __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
#endif

    // NOTE: the +1 is for the MMX scaler which reads over the end
    *filterPos = av_malloc((dstW+1)*sizeof(int16_t));

    if (FFABS(xInc - 0x10000) <10) // unscaled
    {
        int i;
        filterSize= 1;
        filter= av_mallocz(dstW*sizeof(*filter)*filterSize);

        for (i=0; i<dstW; i++)
        {
            filter[i*filterSize]= fone;
            (*filterPos)[i]=i;
        }

    }
    else if (flags&SWS_POINT) // lame looking point sampling mode
    {
        int i;
        int xDstInSrc;
        filterSize= 1;
        filter= av_malloc(dstW*sizeof(*filter)*filterSize);

        xDstInSrc= xInc/2 - 0x8000;
        for (i=0; i<dstW; i++)
        {
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;

            (*filterPos)[i]= xx;
            filter[i]= fone;
            xDstInSrc+= xInc;
        }
    }
    else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
    {
        int i;
        int xDstInSrc;
        if      (flags&SWS_BICUBIC) filterSize= 4;
        else if (flags&SWS_X      ) filterSize= 4;
        else                        filterSize= 2; // SWS_BILINEAR / SWS_AREA
        filter= av_malloc(dstW*sizeof(*filter)*filterSize);

        xDstInSrc= xInc/2 - 0x8000;
        for (i=0; i<dstW; i++)
        {
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
            int j;

            (*filterPos)[i]= xx;
                //bilinear upscale / linear interpolate / area averaging
                for (j=0; j<filterSize; j++)
                {
                    int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
                    if (coeff<0) coeff=0;
                    filter[i*filterSize + j]= coeff;
                    xx++;
                }
            xDstInSrc+= xInc;
        }
    }
    else
    {
        int xDstInSrc;
        int sizeFactor;

        if      (flags&SWS_BICUBIC)      sizeFactor=  4;
        else if (flags&SWS_X)            sizeFactor=  8;
        else if (flags&SWS_AREA)         sizeFactor=  1; //downscale only, for upscale it is bilinear
        else if (flags&SWS_GAUSS)        sizeFactor=  8;   // infinite ;)
        else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
        else if (flags&SWS_SINC)         sizeFactor= 20; // infinite ;)
        else if (flags&SWS_SPLINE)       sizeFactor= 20;  // infinite ;)
        else if (flags&SWS_BILINEAR)     sizeFactor=  2;
        else {
            sizeFactor= 0; //GCC warning killer
            assert(0);
        }

        if (xInc <= 1<<16)      filterSize= 1 + sizeFactor; // upscale
        else                    filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;

        if (filterSize > srcW-2) filterSize=srcW-2;

        filter= av_malloc(dstW*sizeof(*filter)*filterSize);

        xDstInSrc= xInc - 0x10000;
        for (i=0; i<dstW; i++)
        {
            int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
            int j;
            (*filterPos)[i]= xx;
            for (j=0; j<filterSize; j++)
            {
                int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
                double floatd;
                int64_t coeff;

                if (xInc > 1<<16)
                    d= d*dstW/srcW;
                floatd= d * (1.0/(1<<30));

                if (flags & SWS_BICUBIC)
                {
                    int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1<<24);
                    int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
                    int64_t dd = ( d*d)>>30;
                    int64_t ddd= (dd*d)>>30;

                    if      (d < 1LL<<30)
                        coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
                    else if (d < 1LL<<31)
                        coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
                    else
                        coeff=0.0;
                    coeff *= fone>>(30+24);
                }
/*                else if (flags & SWS_X)
                {
                    double p= param ? param*0.01 : 0.3;
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
                    coeff*= pow(2.0, - p*d*d);
                }*/
                else if (flags & SWS_X)
                {
                    double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
                    double c;

                    if (floatd<1.0)
                        c = cos(floatd*PI);
                    else
                        c=-1.0;
                    if (c<0.0)      c= -pow(-c, A);
                    else            c=  pow( c, A);
                    coeff= (c*0.5 + 0.5)*fone;
                }
                else if (flags & SWS_AREA)
                {
                    int64_t d2= d - (1<<29);
                    if      (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
                    else if (d2*xInc <  (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
                    else coeff=0.0;
                    coeff *= fone>>(30+16);
                }
                else if (flags & SWS_GAUSS)
                {
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                    coeff = (pow(2.0, - p*floatd*floatd))*fone;
                }
                else if (flags & SWS_SINC)
                {
                    coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
                }
                else if (flags & SWS_LANCZOS)
                {
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
                    coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
                    if (floatd>p) coeff=0;
                }
                else if (flags & SWS_BILINEAR)
                {
                    coeff= (1<<30) - d;
                    if (coeff<0) coeff=0;
                    coeff *= fone >> 30;
                }
                else if (flags & SWS_SPLINE)
                {
                    double p=-2.196152422706632;
                    coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
                }
                else {
                    coeff= 0.0; //GCC warning killer
                    assert(0);
                }

                filter[i*filterSize + j]= coeff;
                xx++;
            }
            xDstInSrc+= 2*xInc;
        }
    }

    /* apply src & dst Filter to filter -> filter2
       av_free(filter);
    */
    assert(filterSize>0);
    filter2Size= filterSize;
    if (srcFilter) filter2Size+= srcFilter->length - 1;
    if (dstFilter) filter2Size+= dstFilter->length - 1;
    assert(filter2Size>0);
    filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));

    for (i=0; i<dstW; i++)
    {
        int j, k;

        if(srcFilter){
            for (k=0; k<srcFilter->length; k++){
                for (j=0; j<filterSize; j++)
                    filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
            }
        }else{
            for (j=0; j<filterSize; j++)
                filter2[i*filter2Size + j]= filter[i*filterSize + j];
        }
        //FIXME dstFilter

        (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
    }
    av_freep(&filter);

    /* try to reduce the filter-size (step1 find size and shift left) */
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
    minFilterSize= 0;
    for (i=dstW-1; i>=0; i--)
    {
        int min= filter2Size;
        int j;
        int64_t cutOff=0.0;

        /* get rid off near zero elements on the left by shifting left */
        for (j=0; j<filter2Size; j++)
        {
            int k;
            cutOff += FFABS(filter2[i*filter2Size]);

            if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;

            /* preserve monotonicity because the core can't handle the filter otherwise */
            if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;

            // move filter coefficients left
            for (k=1; k<filter2Size; k++)
                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
            filter2[i*filter2Size + k - 1]= 0;
            (*filterPos)[i]++;
        }

        cutOff=0;
        /* count near zeros on the right */
        for (j=filter2Size-1; j>0; j--)
        {
            cutOff += FFABS(filter2[i*filter2Size + j]);

            if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
            min--;
        }

        if (min>minFilterSize) minFilterSize= min;
    }

    if (flags & SWS_CPU_CAPS_ALTIVEC) {
        // we can handle the special case 4,
        // so we don't want to go to the full 8
        if (minFilterSize < 5)
            filterAlign = 4;

        // We really don't want to waste our time
        // doing useless computation, so fall back on
        // the scalar C code for very small filters.
        // Vectorizing is worth it only if you have a
        // decent-sized vector.
        if (minFilterSize < 3)
            filterAlign = 1;
    }

    if (flags & SWS_CPU_CAPS_MMX) {
        // special case for unscaled vertical filtering
        if (minFilterSize == 1 && filterAlign == 2)
            filterAlign= 1;
    }

    assert(minFilterSize > 0);
    filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
    assert(filterSize > 0);
    filter= av_malloc(filterSize*dstW*sizeof(*filter));
    if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
        goto error;
    *outFilterSize= filterSize;

    if (flags&SWS_PRINT_INFO)
        av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
    /* try to reduce the filter-size (step2 reduce it) */
    for (i=0; i<dstW; i++)
    {
        int j;

        for (j=0; j<filterSize; j++)
        {
            if (j>=filter2Size) filter[i*filterSize + j]= 0;
            else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
            if((flags & SWS_BITEXACT) && j>=minFilterSize)
                filter[i*filterSize + j]= 0;
        }
    }


    //FIXME try to align filterPos if possible

    //fix borders
    for (i=0; i<dstW; i++)
    {
        int j;
        if ((*filterPos)[i] < 0)
        {
            // move filter coefficients left to compensate for filterPos
            for (j=1; j<filterSize; j++)
            {
                int left= FFMAX(j + (*filterPos)[i], 0);
                filter[i*filterSize + left] += filter[i*filterSize + j];
                filter[i*filterSize + j]=0;
            }
            (*filterPos)[i]= 0;
        }

        if ((*filterPos)[i] + filterSize > srcW)
        {
            int shift= (*filterPos)[i] + filterSize - srcW;
            // move filter coefficients right to compensate for filterPos
            for (j=filterSize-2; j>=0; j--)
            {
                int right= FFMIN(j + shift, filterSize-1);
                filter[i*filterSize +right] += filter[i*filterSize +j];
                filter[i*filterSize +j]=0;
            }
            (*filterPos)[i]= srcW - filterSize;
        }
    }

    // Note the +1 is for the MMX scaler which reads over the end
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
    *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));

    /* normalize & store in outFilter */
    for (i=0; i<dstW; i++)
    {
        int j;
        int64_t error=0;
        int64_t sum=0;

        for (j=0; j<filterSize; j++)
        {
            sum+= filter[i*filterSize + j];
        }
        sum= (sum + one/2)/ one;
        for (j=0; j<*outFilterSize; j++)
        {
            int64_t v= filter[i*filterSize + j] + error;
            int intV= ROUNDED_DIV(v, sum);
            (*outFilter)[i*(*outFilterSize) + j]= intV;
            error= v - intV*sum;
        }
    }

    (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
    for (i=0; i<*outFilterSize; i++)
    {
        int j= dstW*(*outFilterSize);
        (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
    }

    ret=0;
error:
    av_free(filter);
    av_free(filter2);
    return ret;
}

#ifdef COMPILE_MMX2
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
{
    uint8_t *fragmentA;
    long imm8OfPShufW1A;
    long imm8OfPShufW2A;
    long fragmentLengthA;
    uint8_t *fragmentB;
    long imm8OfPShufW1B;
    long imm8OfPShufW2B;
    long fragmentLengthB;
    int fragmentPos;

    int xpos, i;

    // create an optimized horizontal scaling routine

    //code fragment

    __asm__ volatile(
        "jmp                         9f                 \n\t"
    // Begin
        "0:                                             \n\t"
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
        "punpcklbw                %%mm7, %%mm1          \n\t"
        "punpcklbw                %%mm7, %%mm0          \n\t"
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
        "1:                                             \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
        "2:                                             \n\t"
        "psubw                    %%mm1, %%mm0          \n\t"
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
        "pmullw                   %%mm3, %%mm0          \n\t"
        "psllw                       $7, %%mm1          \n\t"
        "paddw                    %%mm1, %%mm0          \n\t"

        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"

        "add                         $8, %%"REG_a"      \n\t"
    // End
        "9:                                             \n\t"
//        "int $3                                         \n\t"
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
        "dec                         %1                 \n\t"
        "dec                         %2                 \n\t"
        "sub                         %0, %1             \n\t"
        "sub                         %0, %2             \n\t"
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
        "sub                         %0, %3             \n\t"


        :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
        "=r" (fragmentLengthA)
    );

    __asm__ volatile(
        "jmp                         9f                 \n\t"
    // Begin
        "0:                                             \n\t"
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
        "punpcklbw                %%mm7, %%mm0          \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
        "1:                                             \n\t"
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
        "2:                                             \n\t"
        "psubw                    %%mm1, %%mm0          \n\t"
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
        "pmullw                   %%mm3, %%mm0          \n\t"
        "psllw                       $7, %%mm1          \n\t"
        "paddw                    %%mm1, %%mm0          \n\t"

        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"

        "add                         $8, %%"REG_a"      \n\t"
    // End
        "9:                                             \n\t"
//        "int                       $3                   \n\t"
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
        "dec                         %1                 \n\t"
        "dec                         %2                 \n\t"
        "sub                         %0, %1             \n\t"
        "sub                         %0, %2             \n\t"
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
        "sub                         %0, %3             \n\t"


        :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
        "=r" (fragmentLengthB)
    );

    xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
    fragmentPos=0;

    for (i=0; i<dstW/numSplits; i++)
    {
        int xx=xpos>>16;

        if ((i&3) == 0)
        {
            int a=0;
            int b=((xpos+xInc)>>16) - xx;
            int c=((xpos+xInc*2)>>16) - xx;
            int d=((xpos+xInc*3)>>16) - xx;

            filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
            filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
            filterPos[i/2]= xx;

            if (d+1<4)
            {
                int maxShift= 3-(d+1);
                int shift=0;

                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);

                funnyCode[fragmentPos + imm8OfPShufW1B]=
                    (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
                funnyCode[fragmentPos + imm8OfPShufW2B]=
                    a | (b<<2) | (c<<4) | (d<<6);

                if (i+3>=dstW) shift=maxShift; //avoid overread
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align

                if (shift && i>=shift)
                {
                    funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
                    funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
                    filterPos[i/2]-=shift;
                }

                fragmentPos+= fragmentLengthB;
            }
            else
            {
                int maxShift= 3-d;
                int shift=0;

                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);

                funnyCode[fragmentPos + imm8OfPShufW1A]=
                funnyCode[fragmentPos + imm8OfPShufW2A]=
                    a | (b<<2) | (c<<4) | (d<<6);

                if (i+4>=dstW) shift=maxShift; //avoid overread
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align

                if (shift && i>=shift)
                {
                    funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
                    funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
                    filterPos[i/2]-=shift;
                }

                fragmentPos+= fragmentLengthA;
            }

            funnyCode[fragmentPos]= RET;
        }
        xpos+=xInc;
    }
    filterPos[i/2]= xpos>>16; // needed to jump to the next part
}
#endif /* COMPILE_MMX2 */

static void globalInit(void){
    // generating tables:
    int i;
    for (i=0; i<768; i++){
        int c= av_clip_uint8(i-256);
        clip_table[i]=c;
    }
}

static SwsFunc getSwsFunc(int flags){

#if CONFIG_RUNTIME_CPUDETECT
#if ARCH_X86 && CONFIG_GPL
    // ordered per speed fastest first
    if (flags & SWS_CPU_CAPS_MMX2)
        return swScale_MMX2;
    else if (flags & SWS_CPU_CAPS_3DNOW)
        return swScale_3DNow;
    else if (flags & SWS_CPU_CAPS_MMX)
        return swScale_MMX;
    else
        return swScale_C;

#else
#if ARCH_PPC && defined COMPILE_ALTIVEC
    if (flags & SWS_CPU_CAPS_ALTIVEC)
        return swScale_altivec;
    else
        return swScale_C;
#endif
    return swScale_C;
#endif /* ARCH_X86 && CONFIG_GPL */
#else //CONFIG_RUNTIME_CPUDETECT
#if   HAVE_MMX2
    return swScale_MMX2;
#elif HAVE_AMD3DNOW
    return swScale_3DNow;
#elif HAVE_MMX
    return swScale_MMX;
#elif HAVE_ALTIVEC
    return swScale_altivec;
#else
    return swScale_C;
#endif
#endif //!CONFIG_RUNTIME_CPUDETECT
}

static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
    /* Copy Y plane */
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
        memcpy(dst, src[0], srcSliceH*dstStride[0]);
    else
    {
        int i;
        uint8_t *srcPtr= src[0];
        uint8_t *dstPtr= dst;
        for (i=0; i<srcSliceH; i++)
        {
            memcpy(dstPtr, srcPtr, c->srcW);
            srcPtr+= srcStride[0];
            dstPtr+= dstStride[0];
        }
    }
    dst = dstParam[1] + dstStride[1]*srcSliceY/2;
    if (c->dstFormat == PIX_FMT_NV12)
        interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
    else
        interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);

    return srcSliceH;
}

static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);

    return srcSliceH;
}

static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);

    return srcSliceH;
}

static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                                int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);

    return srcSliceH;
}

static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                                int srcSliceH, uint8_t* dstParam[], int dstStride[]){
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;

    yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);

    return srcSliceH;
}

static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                          int srcSliceH, uint8_t* dst[], int dstStride[]){
    const enum PixelFormat srcFormat= c->srcFormat;
    const enum PixelFormat dstFormat= c->dstFormat;
    void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
                 const uint8_t *palette)=NULL;
    int i;
    uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
    uint8_t *srcPtr= src[0];

    if (!usePal(srcFormat))
        av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
               sws_format_name(srcFormat), sws_format_name(dstFormat));

    switch(dstFormat){
    case PIX_FMT_RGB32  : conv = palette8topacked32; break;
    case PIX_FMT_BGR32  : conv = palette8topacked32; break;
    case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
    case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
    case PIX_FMT_RGB24  : conv = palette8topacked24; break;
    case PIX_FMT_BGR24  : conv = palette8topacked24; break;
    default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
                    sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
    }


    for (i=0; i<srcSliceH; i++) {
        conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
        srcPtr+= srcStride[0];
        dstPtr+= dstStride[0];
    }

    return srcSliceH;
}

/* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                          int srcSliceH, uint8_t* dst[], int dstStride[]){
    const enum PixelFormat srcFormat= c->srcFormat;
    const enum PixelFormat dstFormat= c->dstFormat;
    const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
    const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
    const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
    const int dstId= fmt_depth(dstFormat) >> 2;
    void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;

    /* BGR -> BGR */
    if (  (isBGR(srcFormat) && isBGR(dstFormat))
       || (isRGB(srcFormat) && isRGB(dstFormat))){
        switch(srcId | (dstId<<4)){
        case 0x34: conv= rgb16to15; break;
        case 0x36: conv= rgb24to15; break;
        case 0x38: conv= rgb32to15; break;
        case 0x43: conv= rgb15to16; break;
        case 0x46: conv= rgb24to16; break;
        case 0x48: conv= rgb32to16; break;
        case 0x63: conv= rgb15to24; break;
        case 0x64: conv= rgb16to24; break;
        case 0x68: conv= rgb32to24; break;
        case 0x83: conv= rgb15to32; break;
        case 0x84: conv= rgb16to32; break;
        case 0x86: conv= rgb24to32; break;
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
        }
    }else if (  (isBGR(srcFormat) && isRGB(dstFormat))
             || (isRGB(srcFormat) && isBGR(dstFormat))){
        switch(srcId | (dstId<<4)){
        case 0x33: conv= rgb15tobgr15; break;
        case 0x34: conv= rgb16tobgr15; break;
        case 0x36: conv= rgb24tobgr15; break;
        case 0x38: conv= rgb32tobgr15; break;
        case 0x43: conv= rgb15tobgr16; break;
        case 0x44: conv= rgb16tobgr16; break;
        case 0x46: conv= rgb24tobgr16; break;
        case 0x48: conv= rgb32tobgr16; break;
        case 0x63: conv= rgb15tobgr24; break;
        case 0x64: conv= rgb16tobgr24; break;
        case 0x66: conv= rgb24tobgr24; break;
        case 0x68: conv= rgb32tobgr24; break;
        case 0x83: conv= rgb15tobgr32; break;
        case 0x84: conv= rgb16tobgr32; break;
        case 0x86: conv= rgb24tobgr32; break;
        case 0x88: conv= rgb32tobgr32; break;
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
        }
    }else{
        av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
               sws_format_name(srcFormat), sws_format_name(dstFormat));
    }

    if(conv)
    {
        uint8_t *srcPtr= src[0];
        if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
            srcPtr += ALT32_CORR;

        if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
            conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
        else
        {
            int i;
            uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;

            for (i=0; i<srcSliceH; i++)
            {
                conv(srcPtr, dstPtr, c->srcW*srcBpp);
                srcPtr+= srcStride[0];
                dstPtr+= dstStride[0];
            }
        }
    }
    return srcSliceH;
}

static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                              int srcSliceH, uint8_t* dst[], int dstStride[]){

    rgb24toyv12(
        src[0],
        dst[0]+ srcSliceY    *dstStride[0],
        dst[1]+(srcSliceY>>1)*dstStride[1],
        dst[2]+(srcSliceY>>1)*dstStride[2],
        c->srcW, srcSliceH,
        dstStride[0], dstStride[1], srcStride[0]);
    return srcSliceH;
}

static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                             int srcSliceH, uint8_t* dst[], int dstStride[]){
    int i;

    /* copy Y */
    if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
        memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
    else{
        uint8_t *srcPtr= src[0];
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;

        for (i=0; i<srcSliceH; i++)
        {
            memcpy(dstPtr, srcPtr, c->srcW);
            srcPtr+= srcStride[0];
            dstPtr+= dstStride[0];
        }
    }

    if (c->dstFormat==PIX_FMT_YUV420P){
        planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
        planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
    }else{
        planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
        planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
    }
    return srcSliceH;
}

/* unscaled copy like stuff (assumes nearly identical formats) */
static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[])
{
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
    else
    {
        int i;
        uint8_t *srcPtr= src[0];
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
        int length=0;

        /* universal length finder */
        while(length+c->srcW <= FFABS(dstStride[0])
           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
        assert(length!=0);

        for (i=0; i<srcSliceH; i++)
        {
            memcpy(dstPtr, srcPtr, length);
            srcPtr+= srcStride[0];
            dstPtr+= dstStride[0];
        }
    }
    return srcSliceH;
}

static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[])
{
    int plane;
    for (plane=0; plane<3; plane++)
    {
        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);

        if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
        {
            if (!isGray(c->dstFormat))
                memset(dst[plane], 128, dstStride[plane]*height);
        }
        else
        {
            if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
                memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
            else
            {
                int i;
                uint8_t *srcPtr= src[plane];
                uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
                for (i=0; i<height; i++)
                {
                    memcpy(dstPtr, srcPtr, length);
                    srcPtr+= srcStride[plane];
                    dstPtr+= dstStride[plane];
                }
            }
        }
    }
    return srcSliceH;
}

static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                        int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint8_t *srcPtr= src[0];
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;

    if (!isGray(c->dstFormat)){
        int height= -((-srcSliceH)>>c->chrDstVSubSample);
        memset(dst[1], 128, dstStride[1]*height);
        memset(dst[2], 128, dstStride[2]*height);
    }
    if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
        srcPtr+= srcStride[0];
        dstPtr+= dstStride[0];
    }
    return srcSliceH;
}

static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                        int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint8_t *srcPtr= src[0];
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++)
        {
            dstPtr[j<<1] = srcPtr[j];
            dstPtr[(j<<1)+1] = srcPtr[j];
        }
        srcPtr+= srcStride[0];
        dstPtr+= dstStride[0];
    }
    return srcSliceH;
}

static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[]){

    int length= c->srcW;
    int y=      srcSliceY;
    int height= srcSliceH;
    int i, j;
    uint16_t *srcPtr= (uint16_t*)src[0];
    uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
    for (i=0; i<height; i++)
    {
        for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
        srcPtr+= srcStride[0]/2;
        dstPtr+= dstStride[0]/2;
    }
    return srcSliceH;
}


static void getSubSampleFactors(int *h, int *v, int format){
    switch(format){
    case PIX_FMT_UYVY422:
    case PIX_FMT_YUYV422:
        *h=1;
        *v=0;
        break;
    case PIX_FMT_YUV420P:
    case PIX_FMT_YUVA420P:
    case PIX_FMT_GRAY16BE:
    case PIX_FMT_GRAY16LE:
    case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
    case PIX_FMT_NV12:
    case PIX_FMT_NV21:
        *h=1;
        *v=1;
        break;
    case PIX_FMT_YUV440P:
        *h=0;
        *v=1;
        break;
    case PIX_FMT_YUV410P:
        *h=2;
        *v=2;
        break;
    case PIX_FMT_YUV444P:
        *h=0;
        *v=0;
        break;
    case PIX_FMT_YUV422P:
        *h=1;
        *v=0;
        break;
    case PIX_FMT_YUV411P:
        *h=2;
        *v=0;
        break;
    default:
        *h=0;
        *v=0;
        break;
    }
}

static uint16_t roundToInt16(int64_t f){
    int r= (f + (1<<15))>>16;
         if (r<-0x7FFF) return 0x8000;
    else if (r> 0x7FFF) return 0x7FFF;
    else                return r;
}

/**
 * @param inv_table the yuv2rgb coefficients, normally ff_yuv2rgb_coeffs[x]
 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
 * @return -1 if not supported
 */
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
    int64_t crv =  inv_table[0];
    int64_t cbu =  inv_table[1];
    int64_t cgu = -inv_table[2];
    int64_t cgv = -inv_table[3];
    int64_t cy  = 1<<16;
    int64_t oy  = 0;

    memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
    memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);

    c->brightness= brightness;
    c->contrast  = contrast;
    c->saturation= saturation;
    c->srcRange  = srcRange;
    c->dstRange  = dstRange;
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;

    c->uOffset=   0x0400040004000400LL;
    c->vOffset=   0x0400040004000400LL;

    if (!srcRange){
        cy= (cy*255) / 219;
        oy= 16<<16;
    }else{
        crv= (crv*224) / 255;
        cbu= (cbu*224) / 255;
        cgu= (cgu*224) / 255;
        cgv= (cgv*224) / 255;
    }

    cy = (cy *contrast             )>>16;
    crv= (crv*contrast * saturation)>>32;
    cbu= (cbu*contrast * saturation)>>32;
    cgu= (cgu*contrast * saturation)>>32;
    cgv= (cgv*contrast * saturation)>>32;

    oy -= 256*brightness;

    c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
    c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
    c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
    c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
    c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
    c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;

    c->yuv2rgb_y_coeff  = (int16_t)roundToInt16(cy <<13);
    c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
    c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
    c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
    c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
    c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);

    sws_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
    //FIXME factorize

#ifdef COMPILE_ALTIVEC
    if (c->flags & SWS_CPU_CAPS_ALTIVEC)
        sws_yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
#endif
    return 0;
}

/**
 * @return -1 if not supported
 */
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;

    *inv_table = c->srcColorspaceTable;
    *table     = c->dstColorspaceTable;
    *srcRange  = c->srcRange;
    *dstRange  = c->dstRange;
    *brightness= c->brightness;
    *contrast  = c->contrast;
    *saturation= c->saturation;

    return 0;
}

static int handle_jpeg(enum PixelFormat *format)
{
    switch (*format) {
        case PIX_FMT_YUVJ420P:
            *format = PIX_FMT_YUV420P;
            return 1;
        case PIX_FMT_YUVJ422P:
            *format = PIX_FMT_YUV422P;
            return 1;
        case PIX_FMT_YUVJ444P:
            *format = PIX_FMT_YUV444P;
            return 1;
        case PIX_FMT_YUVJ440P:
            *format = PIX_FMT_YUV440P;
            return 1;
        default:
            return 0;
    }
}

SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
                           SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){

    SwsContext *c;
    int i;
    int usesVFilter, usesHFilter;
    int unscaled, needsDither;
    int srcRange, dstRange;
    SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#if ARCH_X86
    if (flags & SWS_CPU_CAPS_MMX)
        __asm__ volatile("emms\n\t"::: "memory");
#endif

#if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
    flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
#if   HAVE_MMX2
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
#elif HAVE_AMD3DNOW
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
#elif HAVE_MMX
    flags |= SWS_CPU_CAPS_MMX;
#elif HAVE_ALTIVEC
    flags |= SWS_CPU_CAPS_ALTIVEC;
#elif ARCH_BFIN
    flags |= SWS_CPU_CAPS_BFIN;
#endif
#endif /* CONFIG_RUNTIME_CPUDETECT */
    if (clip_table[512] != 255) globalInit();
    if (!rgb15to16) sws_rgb2rgb_init(flags);

    unscaled = (srcW == dstW && srcH == dstH);
    needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
        && (fmt_depth(dstFormat))<24
        && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));

    srcRange = handle_jpeg(&srcFormat);
    dstRange = handle_jpeg(&dstFormat);

    if (!isSupportedIn(srcFormat))
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
        return NULL;
    }
    if (!isSupportedOut(dstFormat))
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
        return NULL;
    }

    i= flags & ( SWS_POINT
                |SWS_AREA
                |SWS_BILINEAR
                |SWS_FAST_BILINEAR
                |SWS_BICUBIC
                |SWS_X
                |SWS_GAUSS
                |SWS_LANCZOS
                |SWS_SINC
                |SWS_SPLINE
                |SWS_BICUBLIN);
    if(!i || (i & (i-1)))
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
        return NULL;
    }

    /* sanity check */
    if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
    {
        av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
               srcW, srcH, dstW, dstH);
        return NULL;
    }
    if(srcW > VOFW || dstW > VOFW){
        av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
        return NULL;
    }

    if (!dstFilter) dstFilter= &dummyFilter;
    if (!srcFilter) srcFilter= &dummyFilter;

    c= av_mallocz(sizeof(SwsContext));

    c->av_class = &sws_context_class;
    c->srcW= srcW;
    c->srcH= srcH;
    c->dstW= dstW;
    c->dstH= dstH;
    c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
    c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
    c->flags= flags;
    c->dstFormat= dstFormat;
    c->srcFormat= srcFormat;
    c->vRounder= 4* 0x0001000100010001ULL;

    usesHFilter= usesVFilter= 0;
    if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
    if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
    if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
    if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
    if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
    if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
    if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
    if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;

    getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
    getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);

    // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
    if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;

    // drop some chroma lines if the user wants it
    c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
    c->chrSrcVSubSample+= c->vChrDrop;

    // drop every other pixel for chroma calculation unless user wants full chroma
    if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
      && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
      && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
      && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
      && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
        c->chrSrcHSubSample=1;

    if (param){
        c->param[0] = param[0];
        c->param[1] = param[1];
    }else{
        c->param[0] =
        c->param[1] = SWS_PARAM_DEFAULT;
    }

    c->chrIntHSubSample= c->chrDstHSubSample;
    c->chrIntVSubSample= c->chrSrcVSubSample;

    // Note the -((-x)>>y) is so that we always round toward +inf.
    c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
    c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
    c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
    c->chrDstH= -((-dstH) >> c->chrDstVSubSample);

    sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);

    /* unscaled special cases */
    if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
    {
        /* yv12_to_nv12 */
        if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
        {
            c->swScale= PlanarToNV12Wrapper;
        }
        /* yuv2bgr */
        if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
            && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
        {
            c->swScale= sws_yuv2rgb_get_func_ptr(c);
        }

        if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
        {
            c->swScale= yvu9toyv12Wrapper;
        }

        /* bgr24toYV12 */
        if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
            c->swScale= bgr24toyv12Wrapper;

        /* RGB/BGR -> RGB/BGR (no dither needed forms) */
        if (  (isBGR(srcFormat) || isRGB(srcFormat))
           && (isBGR(dstFormat) || isRGB(dstFormat))
           && srcFormat != PIX_FMT_BGR8      && dstFormat != PIX_FMT_BGR8
           && srcFormat != PIX_FMT_RGB8      && dstFormat != PIX_FMT_RGB8
           && srcFormat != PIX_FMT_BGR4      && dstFormat != PIX_FMT_BGR4
           && srcFormat != PIX_FMT_RGB4      && dstFormat != PIX_FMT_RGB4
           && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
           && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
           && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
           && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
                                             && dstFormat != PIX_FMT_RGB32_1
                                             && dstFormat != PIX_FMT_BGR32_1
           && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
             c->swScale= rgb2rgbWrapper;

        if ((usePal(srcFormat) && (
                 dstFormat == PIX_FMT_RGB32   ||
                 dstFormat == PIX_FMT_RGB32_1 ||
                 dstFormat == PIX_FMT_RGB24   ||
                 dstFormat == PIX_FMT_BGR32   ||
                 dstFormat == PIX_FMT_BGR32_1 ||
                 dstFormat == PIX_FMT_BGR24)))
             c->swScale= pal2rgbWrapper;

        if (srcFormat == PIX_FMT_YUV422P)
        {
            if (dstFormat == PIX_FMT_YUYV422)
                c->swScale= YUV422PToYuy2Wrapper;
            else if (dstFormat == PIX_FMT_UYVY422)
                c->swScale= YUV422PToUyvyWrapper;
        }

        /* LQ converters if -sws 0 or -sws 4*/
        if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
            /* yv12_to_yuy2 */
            if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
            {
                if (dstFormat == PIX_FMT_YUYV422)
                    c->swScale= PlanarToYuy2Wrapper;
                else if (dstFormat == PIX_FMT_UYVY422)
                    c->swScale= PlanarToUyvyWrapper;
            }
        }

#ifdef COMPILE_ALTIVEC
        if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
            !(c->flags & SWS_BITEXACT) &&
            srcFormat == PIX_FMT_YUV420P) {
          // unscaled YV12 -> packed YUV, we want speed
          if (dstFormat == PIX_FMT_YUYV422)
              c->swScale= yv12toyuy2_unscaled_altivec;
          else if (dstFormat == PIX_FMT_UYVY422)
              c->swScale= yv12touyvy_unscaled_altivec;
        }
#endif

        /* simple copy */
        if (  srcFormat == dstFormat
            || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
            || (isPlanarYUV(srcFormat) && isGray(dstFormat))
            || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
        {
            if (isPacked(c->srcFormat))
                c->swScale= packedCopy;
            else /* Planar YUV or gray */
                c->swScale= planarCopy;
        }

        /* gray16{le,be} conversions */
        if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
        {
            c->swScale= gray16togray;
        }
        if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
        {
            c->swScale= graytogray16;
        }
        if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
        {
            c->swScale= gray16swap;
        }

#if ARCH_BFIN
        if (flags & SWS_CPU_CAPS_BFIN)
            ff_bfin_get_unscaled_swscale (c);
#endif

        if (c->swScale){
            if (flags&SWS_PRINT_INFO)
                av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
            return c;
        }
    }

    if (flags & SWS_CPU_CAPS_MMX2)
    {
        c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
        if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
        {
            if (flags&SWS_PRINT_INFO)
                av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
        }
        if (usesHFilter) c->canMMX2BeUsed=0;
    }
    else
        c->canMMX2BeUsed=0;

    c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
    c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;

    // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
    // but only for the FAST_BILINEAR mode otherwise do correct scaling
    // n-2 is the last chrominance sample available
    // this is not perfect, but no one should notice the difference, the more correct variant
    // would be like the vertical one, but that would require some special code for the
    // first and last pixel
    if (flags&SWS_FAST_BILINEAR)
    {
        if (c->canMMX2BeUsed)
        {
            c->lumXInc+= 20;
            c->chrXInc+= 20;
        }
        //we don't use the x86 asm scaler if MMX is available
        else if (flags & SWS_CPU_CAPS_MMX)
        {
            c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
            c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
        }
    }

    /* precalculate horizontal scaler filter coefficients */
    {
        const int filterAlign=
            (flags & SWS_CPU_CAPS_MMX) ? 4 :
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
            1;

        initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
                   srcW      ,       dstW, filterAlign, 1<<14,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
                   srcFilter->lumH, dstFilter->lumH, c->param);
        initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
                   c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
                   srcFilter->chrH, dstFilter->chrH, c->param);

#define MAX_FUNNY_CODE_SIZE 10000
#if defined(COMPILE_MMX2)
// can't downscale !!!
        if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
        {
#ifdef MAP_ANONYMOUS
            c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
            c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
#else
            c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
            c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
#endif

            c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
            c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
            c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
            c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));

            initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
            initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
        }
#endif /* defined(COMPILE_MMX2) */
    } // initialize horizontal stuff



    /* precalculate vertical scaler filter coefficients */
    {
        const int filterAlign=
            (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
            1;

        initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
                   srcH      ,        dstH, filterAlign, (1<<12),
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
                   srcFilter->lumV, dstFilter->lumV, c->param);
        initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
                   c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
                   srcFilter->chrV, dstFilter->chrV, c->param);

#if HAVE_ALTIVEC
        c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
        c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);

        for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
            int j;
            short *p = (short *)&c->vYCoeffsBank[i];
            for (j=0;j<8;j++)
                p[j] = c->vLumFilter[i];
        }

        for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
            int j;
            short *p = (short *)&c->vCCoeffsBank[i];
            for (j=0;j<8;j++)
                p[j] = c->vChrFilter[i];
        }
#endif
    }

    // calculate buffer sizes so that they won't run out while handling these damn slices
    c->vLumBufSize= c->vLumFilterSize;
    c->vChrBufSize= c->vChrFilterSize;
    for (i=0; i<dstH; i++)
    {
        int chrI= i*c->chrDstH / dstH;
        int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
                           ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));

        nextSlice>>= c->chrSrcVSubSample;
        nextSlice<<= c->chrSrcVSubSample;
        if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
            c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
        if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
            c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
    }

    // allocate pixbufs (we use dynamic allocation because otherwise we would need to
    c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
    c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
    //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
    /* align at 16 bytes for AltiVec */
    for (i=0; i<c->vLumBufSize; i++)
        c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
    for (i=0; i<c->vChrBufSize; i++)
        c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);

    //try to avoid drawing green stuff between the right end and the stride end
    for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);

    assert(2*VOFW == VOF);

    assert(c->chrDstH <= dstH);

    if (flags&SWS_PRINT_INFO)
    {
#ifdef DITHER1XBPP
        const char *dither= " dithered";
#else
        const char *dither= "";
#endif
        if (flags&SWS_FAST_BILINEAR)
            av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
        else if (flags&SWS_BILINEAR)
            av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
        else if (flags&SWS_BICUBIC)
            av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
        else if (flags&SWS_X)
            av_log(c, AV_LOG_INFO, "Experimental scaler, ");
        else if (flags&SWS_POINT)
            av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
        else if (flags&SWS_AREA)
            av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
        else if (flags&SWS_BICUBLIN)
            av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
        else if (flags&SWS_GAUSS)
            av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
        else if (flags&SWS_SINC)
            av_log(c, AV_LOG_INFO, "Sinc scaler, ");
        else if (flags&SWS_LANCZOS)
            av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
        else if (flags&SWS_SPLINE)
            av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
        else
            av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");

        if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
            av_log(c, AV_LOG_INFO, "from %s to%s %s ",
                   sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
        else
            av_log(c, AV_LOG_INFO, "from %s to %s ",
                   sws_format_name(srcFormat), sws_format_name(dstFormat));

        if (flags & SWS_CPU_CAPS_MMX2)
            av_log(c, AV_LOG_INFO, "using MMX2\n");
        else if (flags & SWS_CPU_CAPS_3DNOW)
            av_log(c, AV_LOG_INFO, "using 3DNOW\n");
        else if (flags & SWS_CPU_CAPS_MMX)
            av_log(c, AV_LOG_INFO, "using MMX\n");
        else if (flags & SWS_CPU_CAPS_ALTIVEC)
            av_log(c, AV_LOG_INFO, "using AltiVec\n");
        else
            av_log(c, AV_LOG_INFO, "using C\n");
    }

    if (flags & SWS_PRINT_INFO)
    {
        if (flags & SWS_CPU_CAPS_MMX)
        {
            if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
            else
            {
                if (c->hLumFilterSize==4)
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
                else if (c->hLumFilterSize==8)
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
                else
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");

                if (c->hChrFilterSize==4)
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
                else if (c->hChrFilterSize==8)
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
                else
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
            }
        }
        else
        {
#if ARCH_X86
            av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
#else
            if (flags & SWS_FAST_BILINEAR)
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
            else
                av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
#endif
        }
        if (isPlanarYUV(dstFormat))
        {
            if (c->vLumFilterSize==1)
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        }
        else
        {
            if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
                       "      2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
                av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
            else
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        }

        if (dstFormat==PIX_FMT_BGR24)
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
                   (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
        else if (dstFormat==PIX_FMT_RGB32)
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        else if (dstFormat==PIX_FMT_BGR565)
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
        else if (dstFormat==PIX_FMT_BGR555)
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");

        av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
    }
    if (flags & SWS_PRINT_INFO)
    {
        av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
        av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
    }

    c->swScale= getSwsFunc(flags);
    return c;
}

/**
 * swscale wrapper, so we don't need to export the SwsContext.
 * Assumes planar YUV to be in YUV order instead of YVU.
 */
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
              int srcSliceH, uint8_t* dst[], int dstStride[]){
    int i;
    uint8_t* src2[4]= {src[0], src[1], src[2]};

    if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
        av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
        return 0;
    }
    if (c->sliceDir == 0) {
        if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
    }

    if (usePal(c->srcFormat)){
        for (i=0; i<256; i++){
            int p, r, g, b,y,u,v;
            if(c->srcFormat == PIX_FMT_PAL8){
                p=((uint32_t*)(src[1]))[i];
                r= (p>>16)&0xFF;
                g= (p>> 8)&0xFF;
                b=  p     &0xFF;
            }else if(c->srcFormat == PIX_FMT_RGB8){
                r= (i>>5    )*36;
                g= ((i>>2)&7)*36;
                b= (i&3     )*85;
            }else if(c->srcFormat == PIX_FMT_BGR8){
                b= (i>>6    )*85;
                g= ((i>>3)&7)*36;
                r= (i&7     )*36;
            }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
                r= (i>>3    )*255;
                g= ((i>>1)&3)*85;
                b= (i&1     )*255;
            }else {
                assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
                b= (i>>3    )*255;
                g= ((i>>1)&3)*85;
                r= (i&1     )*255;
            }
            y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
            u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
            v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
            c->pal_yuv[i]= y + (u<<8) + (v<<16);


            switch(c->dstFormat) {
            case PIX_FMT_BGR32:
#ifndef WORDS_BIGENDIAN
            case PIX_FMT_RGB24:
#endif
                c->pal_rgb[i]=  r + (g<<8) + (b<<16);
                break;
            case PIX_FMT_BGR32_1:
#ifdef  WORDS_BIGENDIAN
            case PIX_FMT_BGR24:
#endif
                c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
                break;
            case PIX_FMT_RGB32_1:
#ifdef  WORDS_BIGENDIAN
            case PIX_FMT_RGB24:
#endif
                c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
                break;
            case PIX_FMT_RGB32:
#ifndef WORDS_BIGENDIAN
            case PIX_FMT_BGR24:
#endif
            default:
                c->pal_rgb[i]=  b + (g<<8) + (r<<16);
            }
        }
    }

    // copy strides, so they can safely be modified
    if (c->sliceDir == 1) {
        // slices go from top to bottom
        int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
        int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
        return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
    } else {
        // slices go from bottom to top => we flip the image internally
        uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
                           dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
                           dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
        int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
        int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};

        src2[0] += (srcSliceH-1)*srcStride[0];
        if (!usePal(c->srcFormat))
            src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
        src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];

        return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
    }
}

#if LIBSWSCALE_VERSION_MAJOR < 1
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
    return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
}
#endif

SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
                                float lumaSharpen, float chromaSharpen,
                                float chromaHShift, float chromaVShift,
                                int verbose)
{
    SwsFilter *filter= av_malloc(sizeof(SwsFilter));

    if (lumaGBlur!=0.0){
        filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
        filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
    }else{
        filter->lumH= sws_getIdentityVec();
        filter->lumV= sws_getIdentityVec();
    }

    if (chromaGBlur!=0.0){
        filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
        filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
    }else{
        filter->chrH= sws_getIdentityVec();
        filter->chrV= sws_getIdentityVec();
    }

    if (chromaSharpen!=0.0){
        SwsVector *id= sws_getIdentityVec();
        sws_scaleVec(filter->chrH, -chromaSharpen);
        sws_scaleVec(filter->chrV, -chromaSharpen);
        sws_addVec(filter->chrH, id);
        sws_addVec(filter->chrV, id);
        sws_freeVec(id);
    }

    if (lumaSharpen!=0.0){
        SwsVector *id= sws_getIdentityVec();
        sws_scaleVec(filter->lumH, -lumaSharpen);
        sws_scaleVec(filter->lumV, -lumaSharpen);
        sws_addVec(filter->lumH, id);
        sws_addVec(filter->lumV, id);
        sws_freeVec(id);
    }

    if (chromaHShift != 0.0)
        sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));

    if (chromaVShift != 0.0)
        sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));

    sws_normalizeVec(filter->chrH, 1.0);
    sws_normalizeVec(filter->chrV, 1.0);
    sws_normalizeVec(filter->lumH, 1.0);
    sws_normalizeVec(filter->lumV, 1.0);

    if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
    if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);

    return filter;
}

SwsVector *sws_getGaussianVec(double variance, double quality){
    const int length= (int)(variance*quality + 0.5) | 1;
    int i;
    double *coeff= av_malloc(length*sizeof(double));
    double middle= (length-1)*0.5;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++)
    {
        double dist= i-middle;
        coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
    }

    sws_normalizeVec(vec, 1.0);

    return vec;
}

SwsVector *sws_getConstVec(double c, int length){
    int i;
    double *coeff= av_malloc(length*sizeof(double));
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++)
        coeff[i]= c;

    return vec;
}


SwsVector *sws_getIdentityVec(void){
    return sws_getConstVec(1.0, 1);
}

double sws_dcVec(SwsVector *a){
    int i;
    double sum=0;

    for (i=0; i<a->length; i++)
        sum+= a->coeff[i];

    return sum;
}

void sws_scaleVec(SwsVector *a, double scalar){
    int i;

    for (i=0; i<a->length; i++)
        a->coeff[i]*= scalar;
}

void sws_normalizeVec(SwsVector *a, double height){
    sws_scaleVec(a, height/sws_dcVec(a));
}

static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
    int length= a->length + b->length - 1;
    double *coeff= av_malloc(length*sizeof(double));
    int i, j;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++)
    {
        for (j=0; j<b->length; j++)
        {
            coeff[i+j]+= a->coeff[i]*b->coeff[j];
        }
    }

    return vec;
}

static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
    int length= FFMAX(a->length, b->length);
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];

    return vec;
}

static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
    int length= FFMAX(a->length, b->length);
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];

    return vec;
}

/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
    int length= a->length + FFABS(shift)*2;
    double *coeff= av_malloc(length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= length;

    for (i=0; i<length; i++) coeff[i]= 0.0;

    for (i=0; i<a->length; i++)
    {
        coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
    }

    return vec;
}

void sws_shiftVec(SwsVector *a, int shift){
    SwsVector *shifted= sws_getShiftedVec(a, shift);
    av_free(a->coeff);
    a->coeff= shifted->coeff;
    a->length= shifted->length;
    av_free(shifted);
}

void sws_addVec(SwsVector *a, SwsVector *b){
    SwsVector *sum= sws_sumVec(a, b);
    av_free(a->coeff);
    a->coeff= sum->coeff;
    a->length= sum->length;
    av_free(sum);
}

void sws_subVec(SwsVector *a, SwsVector *b){
    SwsVector *diff= sws_diffVec(a, b);
    av_free(a->coeff);
    a->coeff= diff->coeff;
    a->length= diff->length;
    av_free(diff);
}

void sws_convVec(SwsVector *a, SwsVector *b){
    SwsVector *conv= sws_getConvVec(a, b);
    av_free(a->coeff);
    a->coeff= conv->coeff;
    a->length= conv->length;
    av_free(conv);
}

SwsVector *sws_cloneVec(SwsVector *a){
    double *coeff= av_malloc(a->length*sizeof(double));
    int i;
    SwsVector *vec= av_malloc(sizeof(SwsVector));

    vec->coeff= coeff;
    vec->length= a->length;

    for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];

    return vec;
}

void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
    int i;
    double max=0;
    double min=0;
    double range;

    for (i=0; i<a->length; i++)
        if (a->coeff[i]>max) max= a->coeff[i];

    for (i=0; i<a->length; i++)
        if (a->coeff[i]<min) min= a->coeff[i];

    range= max - min;

    for (i=0; i<a->length; i++)
    {
        int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
        av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
        for (;x>0; x--) av_log(log_ctx, log_level, " ");
        av_log(log_ctx, log_level, "|\n");
    }
}

#if LIBSWSCALE_VERSION_MAJOR < 1
void sws_printVec(SwsVector *a){
    sws_printVec2(a, NULL, AV_LOG_DEBUG);
}
#endif

void sws_freeVec(SwsVector *a){
    if (!a) return;
    av_freep(&a->coeff);
    a->length=0;
    av_free(a);
}

void sws_freeFilter(SwsFilter *filter){
    if (!filter) return;

    if (filter->lumH) sws_freeVec(filter->lumH);
    if (filter->lumV) sws_freeVec(filter->lumV);
    if (filter->chrH) sws_freeVec(filter->chrH);
    if (filter->chrV) sws_freeVec(filter->chrV);
    av_free(filter);
}


void sws_freeContext(SwsContext *c){
    int i;
    if (!c) return;

    if (c->lumPixBuf)
    {
        for (i=0; i<c->vLumBufSize; i++)
            av_freep(&c->lumPixBuf[i]);
        av_freep(&c->lumPixBuf);
    }

    if (c->chrPixBuf)
    {
        for (i=0; i<c->vChrBufSize; i++)
            av_freep(&c->chrPixBuf[i]);
        av_freep(&c->chrPixBuf);
    }

    av_freep(&c->vLumFilter);
    av_freep(&c->vChrFilter);
    av_freep(&c->hLumFilter);
    av_freep(&c->hChrFilter);
#if HAVE_ALTIVEC
    av_freep(&c->vYCoeffsBank);
    av_freep(&c->vCCoeffsBank);
#endif

    av_freep(&c->vLumFilterPos);
    av_freep(&c->vChrFilterPos);
    av_freep(&c->hLumFilterPos);
    av_freep(&c->hChrFilterPos);

#if ARCH_X86 && CONFIG_GPL
#ifdef MAP_ANONYMOUS
    if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
    if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
#else
    av_free(c->funnyYCode);
    av_free(c->funnyUVCode);
#endif
    c->funnyYCode=NULL;
    c->funnyUVCode=NULL;
#endif /* ARCH_X86 && CONFIG_GPL */

    av_freep(&c->lumMmx2Filter);
    av_freep(&c->chrMmx2Filter);
    av_freep(&c->lumMmx2FilterPos);
    av_freep(&c->chrMmx2FilterPos);
    av_freep(&c->yuvTable);

    av_free(c);
}

struct SwsContext *sws_getCachedContext(struct SwsContext *context,
                                        int srcW, int srcH, enum PixelFormat srcFormat,
                                        int dstW, int dstH, enum PixelFormat dstFormat, int flags,
                                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
{
    static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};

    if (!param)
        param = default_param;

    if (context) {
        if (context->srcW != srcW || context->srcH != srcH ||
            context->srcFormat != srcFormat ||
            context->dstW != dstW || context->dstH != dstH ||
            context->dstFormat != dstFormat || context->flags != flags ||
            context->param[0] != param[0] || context->param[1] != param[1])
        {
            sws_freeContext(context);
            context = NULL;
        }
    }
    if (!context) {
        return sws_getContext(srcW, srcH, srcFormat,
                              dstW, dstH, dstFormat, flags,
                              srcFilter, dstFilter, param);
    }
    return context;
}


/* [<][>][^][v][top][bottom][index][help] */