This source file includes following definitions.
- make_filters_from_proto
 
- ps_tableinit
 
#ifndef AVCODEC_AACPS_TABLEGEN_H
#define AVCODEC_AACPS_TABLEGEN_H
#include <math.h>
#include <stdint.h>
#if CONFIG_HARDCODED_TABLES
#define ps_tableinit()
#define TABLE_CONST const
#include "libavcodec/aacps_tables.h"
#else
#include "libavutil/common.h"
#include "libavutil/libm.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#define NR_ALLPASS_BANDS20 30
#define NR_ALLPASS_BANDS34 50
#define PS_AP_LINKS 3
#define TABLE_CONST
static float pd_re_smooth[8*8*8];
static float pd_im_smooth[8*8*8];
static float HA[46][8][4];
static float HB[46][8][4];
static DECLARE_ALIGNED(16, float, f20_0_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_0_12)[12][8][2];
static DECLARE_ALIGNED(16, float, f34_1_8) [ 8][8][2];
static DECLARE_ALIGNED(16, float, f34_2_4) [ 4][8][2];
static TABLE_CONST DECLARE_ALIGNED(16, float, Q_fract_allpass)[2][50][3][2];
static DECLARE_ALIGNED(16, float, phi_fract)[2][50][2];
static const float g0_Q8[] = {
    0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
    0.09885108575264f, 0.11793710567217f, 0.125f
};
static const float g0_Q12[] = {
    0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
    0.07428313801106f, 0.08100347892914f, 0.08333333333333f
};
static const float g1_Q8[] = {
    0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
    0.10307344158036f, 0.12222452249753f, 0.125f
};
static const float g2_Q4[] = {
    -0.05908211155639f, -0.04871498374946f, 0.0f,   0.07778723915851f,
     0.16486303567403f,  0.23279856662996f, 0.25f
};
static av_cold void make_filters_from_proto(float (*filter)[8][2], const float *proto, int bands)
{
    int q, n;
    for (q = 0; q < bands; q++) {
        for (n = 0; n < 7; n++) {
            double theta = 2 * M_PI * (q + 0.5) * (n - 6) / bands;
            filter[q][n][0] = proto[n] *  cos(theta);
            filter[q][n][1] = proto[n] * -sin(theta);
        }
    }
}
static av_cold void ps_tableinit(void)
{
    static const float ipdopd_sin[] = { 0, M_SQRT1_2, 1,  M_SQRT1_2,  0, -M_SQRT1_2, -1, -M_SQRT1_2 };
    static const float ipdopd_cos[] = { 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2,  0,  M_SQRT1_2 };
    int pd0, pd1, pd2;
    static const float iid_par_dequant[] = {
        
        0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
        0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
        5.01187233627272, 7.94328234724282, 17.7827941003892,
        
        0.00316227766017, 0.00562341325190, 0.01,             0.01778279410039,
        0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
        0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
        0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
        1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
        3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
        12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
        100,              177.827941003892, 316.227766016837,
    };
    static const float icc_invq[] = {
        1, 0.937,      0.84118,    0.60092,    0.36764,   0,      -0.589,    -1
    };
    static const float acos_icc_invq[] = {
        0, 0.35685527, 0.57133466, 0.92614472, 1.1943263, M_PI/2, 2.2006171, M_PI
    };
    int iid, icc;
    int k, m;
    static const int8_t f_center_20[] = {
        -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
    };
    static const int8_t f_center_34[] = {
         2,  6, 10, 14, 18, 22, 26, 30,
        34,-10, -6, -2, 51, 57, 15, 21,
        27, 33, 39, 45, 54, 66, 78, 42,
       102, 66, 78, 90,102,114,126, 90,
    };
    static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
    const float fractional_delay_gain = 0.39f;
    for (pd0 = 0; pd0 < 8; pd0++) {
        float pd0_re = ipdopd_cos[pd0];
        float pd0_im = ipdopd_sin[pd0];
        for (pd1 = 0; pd1 < 8; pd1++) {
            float pd1_re = ipdopd_cos[pd1];
            float pd1_im = ipdopd_sin[pd1];
            for (pd2 = 0; pd2 < 8; pd2++) {
                float pd2_re = ipdopd_cos[pd2];
                float pd2_im = ipdopd_sin[pd2];
                float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
                float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
                float pd_mag = 1 / hypot(im_smooth, re_smooth);
                pd_re_smooth[pd0*64+pd1*8+pd2] = re_smooth * pd_mag;
                pd_im_smooth[pd0*64+pd1*8+pd2] = im_smooth * pd_mag;
            }
        }
    }
    for (iid = 0; iid < 46; iid++) {
        float c = iid_par_dequant[iid]; 
        float c1 = (float)M_SQRT2 / sqrtf(1.0f + c*c);
        float c2 = c * c1;
        for (icc = 0; icc < 8; icc++) {
             {
                float alpha = 0.5f * acos_icc_invq[icc];
                float beta  = alpha * (c1 - c2) * (float)M_SQRT1_2;
                HA[iid][icc][0] = c2 * cosf(beta + alpha);
                HA[iid][icc][1] = c1 * cosf(beta - alpha);
                HA[iid][icc][2] = c2 * sinf(beta + alpha);
                HA[iid][icc][3] = c1 * sinf(beta - alpha);
            }  {
                float alpha, gamma, mu, rho;
                float alpha_c, alpha_s, gamma_c, gamma_s;
                rho = FFMAX(icc_invq[icc], 0.05f);
                alpha = 0.5f * atan2f(2.0f * c * rho, c*c - 1.0f);
                mu = c + 1.0f / c;
                mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
                gamma = atanf(sqrtf((1.0f - mu)/(1.0f + mu)));
                if (alpha < 0) alpha += M_PI/2;
                alpha_c = cosf(alpha);
                alpha_s = sinf(alpha);
                gamma_c = cosf(gamma);
                gamma_s = sinf(gamma);
                HB[iid][icc][0] =  M_SQRT2 * alpha_c * gamma_c;
                HB[iid][icc][1] =  M_SQRT2 * alpha_s * gamma_c;
                HB[iid][icc][2] = -M_SQRT2 * alpha_s * gamma_s;
                HB[iid][icc][3] =  M_SQRT2 * alpha_c * gamma_s;
            }
        }
    }
    for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_20))
            f_center = f_center_20[k] * 0.125;
        else
            f_center = k - 6.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[0][k][m][0] = cos(theta);
            Q_fract_allpass[0][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[0][k][0] = cos(theta);
        phi_fract[0][k][1] = sin(theta);
    }
    for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
        double f_center, theta;
        if (k < FF_ARRAY_ELEMS(f_center_34))
            f_center = f_center_34[k] / 24.0;
        else
            f_center = k - 26.5f;
        for (m = 0; m < PS_AP_LINKS; m++) {
            theta = -M_PI * fractional_delay_links[m] * f_center;
            Q_fract_allpass[1][k][m][0] = cos(theta);
            Q_fract_allpass[1][k][m][1] = sin(theta);
        }
        theta = -M_PI*fractional_delay_gain*f_center;
        phi_fract[1][k][0] = cos(theta);
        phi_fract[1][k][1] = sin(theta);
    }
    make_filters_from_proto(f20_0_8,  g0_Q8,   8);
    make_filters_from_proto(f34_0_12, g0_Q12, 12);
    make_filters_from_proto(f34_1_8,  g1_Q8,   8);
    make_filters_from_proto(f34_2_4,  g2_Q4,   4);
}
#endif 
#endif