This source file includes following definitions.
- weighted_vector_sumd
- amrnb_decode_init
- unpack_bitstream
- interpolate_lsf
- lsf2lsp_for_mode12k2
- lsf2lsp_5
- lsf2lsp_3
- decode_pitch_lag_1_6
- decode_pitch_vector
- decode_10bit_pulse
- decode_8_pulses_31bits
- decode_fixed_sparse
- pitch_sharpening
- fixed_gain_smooth
- decode_gains
- apply_ir_filter
- anti_sparseness
- synthesis
- update_state
- tilt_factor
- postfilter
- amrnb_decode_frame
#include <string.h>
#include <math.h>
#include "libavutil/channel_layout.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "celp_math.h"
#include "celp_filters.h"
#include "acelp_filters.h"
#include "acelp_vectors.h"
#include "acelp_pitch_delay.h"
#include "lsp.h"
#include "amr.h"
#include "internal.h"
#include "amrnbdata.h"
#define AMR_BLOCK_SIZE 160
#define AMR_SAMPLE_BOUND 32768.0
#define AMR_SAMPLE_SCALE (2.0 / 32768.0)
#define PRED_FAC_MODE_12k2 0.65
#define LSF_R_FAC (8000.0 / 32768.0)
#define MIN_LSF_SPACING (50.0488 / 8000.0)
#define PITCH_LAG_MIN_MODE_12k2 18
#define MIN_ENERGY -14.0
#define SHARP_MAX 0.79449462890625
#define AMR_TILT_RESPONSE 22
#define AMR_TILT_GAMMA_T 0.8
#define AMR_AGC_ALPHA 0.9
typedef struct AMRContext {
AMRNBFrame frame;
uint8_t bad_frame_indicator;
enum Mode cur_frame_mode;
int16_t prev_lsf_r[LP_FILTER_ORDER];
double lsp[4][LP_FILTER_ORDER];
double prev_lsp_sub4[LP_FILTER_ORDER];
float lsf_q[4][LP_FILTER_ORDER];
float lsf_avg[LP_FILTER_ORDER];
float lpc[4][LP_FILTER_ORDER];
uint8_t pitch_lag_int;
float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE];
float *excitation;
float pitch_vector[AMR_SUBFRAME_SIZE];
float fixed_vector[AMR_SUBFRAME_SIZE];
float prediction_error[4];
float pitch_gain[5];
float fixed_gain[5];
float beta;
uint8_t diff_count;
uint8_t hang_count;
float prev_sparse_fixed_gain;
uint8_t prev_ir_filter_nr;
uint8_t ir_filter_onset;
float postfilter_mem[10];
float tilt_mem;
float postfilter_agc;
float high_pass_mem[2];
float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE];
ACELPFContext acelpf_ctx;
ACELPVContext acelpv_ctx;
CELPFContext celpf_ctx;
CELPMContext celpm_ctx;
} AMRContext;
static void weighted_vector_sumd(double *out, const double *in_a,
const double *in_b, double weight_coeff_a,
double weight_coeff_b, int length)
{
int i;
for (i = 0; i < length; i++)
out[i] = weight_coeff_a * in_a[i]
+ weight_coeff_b * in_b[i];
}
static av_cold int amrnb_decode_init(AVCodecContext *avctx)
{
AMRContext *p = avctx->priv_data;
int i;
if (avctx->channels > 1) {
avpriv_report_missing_feature(avctx, "multi-channel AMR");
return AVERROR_PATCHWELCOME;
}
avctx->channels = 1;
avctx->channel_layout = AV_CH_LAYOUT_MONO;
if (!avctx->sample_rate)
avctx->sample_rate = 8000;
avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
for (i = 0; i < LP_FILTER_ORDER; i++) {
p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
}
for (i = 0; i < 4; i++)
p->prediction_error[i] = MIN_ENERGY;
ff_acelp_filter_init(&p->acelpf_ctx);
ff_acelp_vectors_init(&p->acelpv_ctx);
ff_celp_filter_init(&p->celpf_ctx);
ff_celp_math_init(&p->celpm_ctx);
return 0;
}
static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
int buf_size)
{
enum Mode mode;
mode = buf[0] >> 3 & 0x0F;
p->bad_frame_indicator = (buf[0] & 0x4) != 0x4;
if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
return NO_DATA;
}
if (mode < MODE_DTX)
ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
amr_unpacking_bitmaps_per_mode[mode]);
return mode;
}
static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
{
int i;
for (i = 0; i < 4; i++)
ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
0.25 * (3 - i), 0.25 * (i + 1),
LP_FILTER_ORDER);
}
static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
const float lsf_no_r[LP_FILTER_ORDER],
const int16_t *lsf_quantizer[5],
const int quantizer_offset,
const int sign, const int update)
{
int16_t lsf_r[LP_FILTER_ORDER];
float lsf_q[LP_FILTER_ORDER];
int i;
for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
2 * sizeof(*lsf_r));
if (sign) {
lsf_r[4] *= -1;
lsf_r[5] *= -1;
}
if (update)
memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
for (i = 0; i < LP_FILTER_ORDER; i++)
lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
if (update)
interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
}
static void lsf2lsp_5(AMRContext *p)
{
const uint16_t *lsf_param = p->frame.lsf;
float lsf_no_r[LP_FILTER_ORDER];
const int16_t *lsf_quantizer[5];
int i;
lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
for (i = 0; i < LP_FILTER_ORDER; i++)
lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
}
static void lsf2lsp_3(AMRContext *p)
{
const uint16_t *lsf_param = p->frame.lsf;
int16_t lsf_r[LP_FILTER_ORDER];
float lsf_q[LP_FILTER_ORDER];
const int16_t *lsf_quantizer;
int i, j;
lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
for (i = 0; i < LP_FILTER_ORDER; i++)
lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
for (i = 1; i <= 3; i++)
for(j = 0; j < LP_FILTER_ORDER; j++)
p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
(p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
}
static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
const int prev_lag_int, const int subframe)
{
if (subframe == 0 || subframe == 2) {
if (pitch_index < 463) {
*lag_int = (pitch_index + 107) * 10923 >> 16;
*lag_frac = pitch_index - *lag_int * 6 + 105;
} else {
*lag_int = pitch_index - 368;
*lag_frac = 0;
}
} else {
*lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
*lag_frac = pitch_index - *lag_int * 6 - 3;
*lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
PITCH_DELAY_MAX - 9);
}
}
static void decode_pitch_vector(AMRContext *p,
const AMRNBSubframe *amr_subframe,
const int subframe)
{
int pitch_lag_int, pitch_lag_frac;
enum Mode mode = p->cur_frame_mode;
if (p->cur_frame_mode == MODE_12k2) {
decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
amr_subframe->p_lag, p->pitch_lag_int,
subframe);
} else {
ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
amr_subframe->p_lag,
p->pitch_lag_int, subframe,
mode != MODE_4k75 && mode != MODE_5k15,
mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
pitch_lag_frac *= 2;
}
p->pitch_lag_int = pitch_lag_int;
pitch_lag_int += pitch_lag_frac > 0;
p->acelpf_ctx.acelp_interpolatef(p->excitation,
p->excitation + 1 - pitch_lag_int,
ff_b60_sinc, 6,
pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
10, AMR_SUBFRAME_SIZE);
memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
}
static void decode_10bit_pulse(int code, int pulse_position[8],
int i1, int i2, int i3)
{
const uint8_t *positions = base_five_table[code >> 3];
pulse_position[i1] = (positions[2] << 1) + ( code & 1);
pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
}
static void decode_8_pulses_31bits(const int16_t *fixed_index,
AMRFixed *fixed_sparse)
{
int pulse_position[8];
int i, temp;
decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
pulse_position[3] = temp % 5;
pulse_position[7] = temp / 5;
if (pulse_position[7] & 1)
pulse_position[3] = 4 - pulse_position[3];
pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
fixed_sparse->n = 8;
for (i = 0; i < 4; i++) {
const int pos1 = (pulse_position[i] << 2) + i;
const int pos2 = (pulse_position[i + 4] << 2) + i;
const float sign = fixed_index[i] ? -1.0 : 1.0;
fixed_sparse->x[i ] = pos1;
fixed_sparse->x[i + 4] = pos2;
fixed_sparse->y[i ] = sign;
fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
}
}
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
const enum Mode mode, const int subframe)
{
av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
if (mode == MODE_12k2) {
ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
} else if (mode == MODE_10k2) {
decode_8_pulses_31bits(pulses, fixed_sparse);
} else {
int *pulse_position = fixed_sparse->x;
int i, pulse_subset;
const int fixed_index = pulses[0];
if (mode <= MODE_5k15) {
pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
fixed_sparse->n = 2;
} else if (mode == MODE_5k9) {
pulse_subset = ((fixed_index & 1) << 1) + 1;
pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
pulse_subset = (fixed_index >> 4) & 3;
pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
} else if (mode == MODE_6k7) {
pulse_position[0] = (fixed_index & 7) * 5;
pulse_subset = (fixed_index >> 2) & 2;
pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
pulse_subset = (fixed_index >> 6) & 2;
pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
fixed_sparse->n = 3;
} else {
pulse_position[0] = gray_decode[ fixed_index & 7];
pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
pulse_subset = (fixed_index >> 9) & 1;
pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
fixed_sparse->n = 4;
}
for (i = 0; i < fixed_sparse->n; i++)
fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
}
}
static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
AMRFixed *fixed_sparse)
{
if (mode == MODE_12k2)
p->beta = FFMIN(p->pitch_gain[4], 1.0);
fixed_sparse->pitch_lag = p->pitch_lag_int;
fixed_sparse->pitch_fac = p->beta;
if (mode != MODE_4k75 || subframe & 1)
p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
}
static float fixed_gain_smooth(AMRContext *p , const float *lsf,
const float *lsf_avg, const enum Mode mode)
{
float diff = 0.0;
int i;
for (i = 0; i < LP_FILTER_ORDER; i++)
diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
p->diff_count++;
if (diff <= 0.65)
p->diff_count = 0;
if (p->diff_count > 10) {
p->hang_count = 0;
p->diff_count--;
}
if (p->hang_count < 40) {
p->hang_count++;
} else if (mode < MODE_7k4 || mode == MODE_10k2) {
const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
p->fixed_gain[2] + p->fixed_gain[3] +
p->fixed_gain[4]) * 0.2;
return smoothing_factor * p->fixed_gain[4] +
(1.0 - smoothing_factor) * fixed_gain_mean;
}
return p->fixed_gain[4];
}
static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
const enum Mode mode, const int subframe,
float *fixed_gain_factor)
{
if (mode == MODE_12k2 || mode == MODE_7k95) {
p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
* (1.0 / 16384.0);
*fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
* (1.0 / 2048.0);
} else {
const uint16_t *gains;
if (mode >= MODE_6k7) {
gains = gains_high[amr_subframe->p_gain];
} else if (mode >= MODE_5k15) {
gains = gains_low [amr_subframe->p_gain];
} else {
gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
}
p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
*fixed_gain_factor = gains[1] * (1.0 / 4096.0);
}
}
static void apply_ir_filter(float *out, const AMRFixed *in,
const float *filter)
{
float filter1[AMR_SUBFRAME_SIZE],
filter2[AMR_SUBFRAME_SIZE];
int lag = in->pitch_lag;
float fac = in->pitch_fac;
int i;
if (lag < AMR_SUBFRAME_SIZE) {
ff_celp_circ_addf(filter1, filter, filter, lag, fac,
AMR_SUBFRAME_SIZE);
if (lag < AMR_SUBFRAME_SIZE >> 1)
ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
AMR_SUBFRAME_SIZE);
}
memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
for (i = 0; i < in->n; i++) {
int x = in->x[i];
float y = in->y[i];
const float *filterp;
if (x >= AMR_SUBFRAME_SIZE - lag) {
filterp = filter;
} else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
filterp = filter1;
} else
filterp = filter2;
ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
}
}
static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
const float *fixed_vector,
float fixed_gain, float *out)
{
int ir_filter_nr;
if (p->pitch_gain[4] < 0.6) {
ir_filter_nr = 0;
} else if (p->pitch_gain[4] < 0.9) {
ir_filter_nr = 1;
} else
ir_filter_nr = 2;
if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
p->ir_filter_onset = 2;
} else if (p->ir_filter_onset)
p->ir_filter_onset--;
if (!p->ir_filter_onset) {
int i, count = 0;
for (i = 0; i < 5; i++)
if (p->pitch_gain[i] < 0.6)
count++;
if (count > 2)
ir_filter_nr = 0;
if (ir_filter_nr > p->prev_ir_filter_nr + 1)
ir_filter_nr--;
} else if (ir_filter_nr < 2)
ir_filter_nr++;
if (fixed_gain < 5.0)
ir_filter_nr = 2;
if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
&& ir_filter_nr < 2) {
apply_ir_filter(out, fixed_sparse,
(p->cur_frame_mode == MODE_7k95 ?
ir_filters_lookup_MODE_7k95 :
ir_filters_lookup)[ir_filter_nr]);
fixed_vector = out;
}
p->prev_ir_filter_nr = ir_filter_nr;
p->prev_sparse_fixed_gain = fixed_gain;
return fixed_vector;
}
static int synthesis(AMRContext *p, float *lpc,
float fixed_gain, const float *fixed_vector,
float *samples, uint8_t overflow)
{
int i;
float excitation[AMR_SUBFRAME_SIZE];
if (overflow)
for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
p->pitch_vector[i] *= 0.25;
p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
if (p->pitch_gain[4] > 0.5 && !overflow) {
float energy = p->celpm_ctx.dot_productf(excitation, excitation,
AMR_SUBFRAME_SIZE);
float pitch_factor =
p->pitch_gain[4] *
(p->cur_frame_mode == MODE_12k2 ?
0.25 * FFMIN(p->pitch_gain[4], 1.0) :
0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
excitation[i] += pitch_factor * p->pitch_vector[i];
ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
AMR_SUBFRAME_SIZE);
}
p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
AMR_SUBFRAME_SIZE,
LP_FILTER_ORDER);
for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
return 1;
}
return 0;
}
static void update_state(AMRContext *p)
{
memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
(PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
LP_FILTER_ORDER * sizeof(float));
}
static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
{
float rh0, rh1;
float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
float *hf = impulse_buffer + LP_FILTER_ORDER;
hf[0] = 1.0;
memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
AMR_TILT_RESPONSE,
LP_FILTER_ORDER);
rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
}
static void postfilter(AMRContext *p, float *lpc, float *buf_out)
{
int i;
float *samples = p->samples_in + LP_FILTER_ORDER;
float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
AMR_SUBFRAME_SIZE);
float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];
const float *gamma_n, *gamma_d;
float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER];
if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
gamma_n = ff_pow_0_7;
gamma_d = ff_pow_0_75;
} else {
gamma_n = ff_pow_0_55;
gamma_d = ff_pow_0_7;
}
for (i = 0; i < LP_FILTER_ORDER; i++) {
lpc_n[i] = lpc[i] * gamma_n[i];
lpc_d[i] = lpc[i] * gamma_d[i];
}
memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
sizeof(float) * LP_FILTER_ORDER);
p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
pole_out + LP_FILTER_ORDER,
AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
AMR_SUBFRAME_SIZE);
ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
AMR_AGC_ALPHA, &p->postfilter_agc);
}
static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
AMRContext *p = avctx->priv_data;
AVFrame *frame = data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
float *buf_out;
int i, subframe, ret;
float fixed_gain_factor;
AMRFixed fixed_sparse = {0};
float spare_vector[AMR_SUBFRAME_SIZE];
float synth_fixed_gain;
const float *synth_fixed_vector;
frame->nb_samples = AMR_BLOCK_SIZE;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
buf_out = (float *)frame->data[0];
p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
if (p->cur_frame_mode == NO_DATA) {
av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
return AVERROR_INVALIDDATA;
}
if (p->cur_frame_mode == MODE_DTX) {
avpriv_report_missing_feature(avctx, "dtx mode");
av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
return AVERROR_PATCHWELCOME;
}
if (p->cur_frame_mode == MODE_12k2) {
lsf2lsp_5(p);
} else
lsf2lsp_3(p);
for (i = 0; i < 4; i++)
ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
for (subframe = 0; subframe < 4; subframe++) {
const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
decode_pitch_vector(p, amr_subframe, subframe);
decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
p->cur_frame_mode, subframe);
decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
&fixed_gain_factor);
pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
if (fixed_sparse.pitch_lag == 0) {
av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
return AVERROR_INVALIDDATA;
}
ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
AMR_SUBFRAME_SIZE);
p->fixed_gain[4] =
ff_amr_set_fixed_gain(fixed_gain_factor,
p->celpm_ctx.dot_productf(p->fixed_vector,
p->fixed_vector,
AMR_SUBFRAME_SIZE) /
AMR_SUBFRAME_SIZE,
p->prediction_error,
energy_mean[p->cur_frame_mode], energy_pred_fac);
for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
p->excitation[i] *= p->pitch_gain[4];
ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
AMR_SUBFRAME_SIZE);
for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
p->excitation[i] = truncf(p->excitation[i]);
synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
p->lsf_avg, p->cur_frame_mode);
synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
synth_fixed_gain, spare_vector);
if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
synthesis(p, p->lpc[subframe], synth_fixed_gain,
synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
update_state(p);
}
p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
buf_out, highpass_zeros,
highpass_poles,
highpass_gain * AMR_SAMPLE_SCALE,
p->high_pass_mem, AMR_BLOCK_SIZE);
p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
0.84, 0.16, LP_FILTER_ORDER);
*got_frame_ptr = 1;
return frame_sizes_nb[p->cur_frame_mode] + 1;
}
AVCodec ff_amrnb_decoder = {
.name = "amrnb",
.long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_AMR_NB,
.priv_data_size = sizeof(AMRContext),
.init = amrnb_decode_init,
.decode = amrnb_decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_NONE },
};