This source file includes following definitions.
- get_input_native
- set_input_output_native
- ff_dnn_load_model_native
- ff_dnn_execute_model_native
- calculate_operand_dims_count
- calculate_operand_data_length
- ff_dnn_free_model_native
#include "dnn_backend_native.h"
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h"
static DNNReturnType get_input_native(void *model, DNNData *input, const char *input_name)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
for (int i = 0; i < network->operands_num; ++i) {
DnnOperand *oprd = &network->operands[i];
if (strcmp(oprd->name, input_name) == 0) {
if (oprd->type != DOT_INPUT)
return DNN_ERROR;
input->dt = oprd->data_type;
av_assert0(oprd->dims[0] == 1);
input->height = oprd->dims[1];
input->width = oprd->dims[2];
input->channels = oprd->dims[3];
return DNN_SUCCESS;
}
}
return DNN_ERROR;
}
static DNNReturnType set_input_output_native(void *model, DNNData *input, const char *input_name, const char **output_names, uint32_t nb_output)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model;
DnnOperand *oprd = NULL;
if (network->layers_num <= 0 || network->operands_num <= 0)
return DNN_ERROR;
for (int i = 0; i < network->operands_num; ++i) {
oprd = &network->operands[i];
if (strcmp(oprd->name, input_name) == 0) {
if (oprd->type != DOT_INPUT)
return DNN_ERROR;
break;
}
oprd = NULL;
}
if (!oprd)
return DNN_ERROR;
oprd->dims[0] = 1;
oprd->dims[1] = input->height;
oprd->dims[2] = input->width;
oprd->dims[3] = input->channels;
av_freep(&oprd->data);
oprd->length = calculate_operand_data_length(oprd);
if (oprd->length <= 0)
return DNN_ERROR;
oprd->data = av_malloc(oprd->length);
if (!oprd->data)
return DNN_ERROR;
input->data = oprd->data;
network->nb_output = 0;
av_freep(&network->output_indexes);
network->output_indexes = av_mallocz_array(nb_output, sizeof(*network->output_indexes));
if (!network->output_indexes)
return DNN_ERROR;
for (uint32_t i = 0; i < nb_output; ++i) {
const char *output_name = output_names[i];
for (int j = 0; j < network->operands_num; ++j) {
oprd = &network->operands[j];
if (strcmp(oprd->name, output_name) == 0) {
network->output_indexes[network->nb_output++] = j;
break;
}
}
}
if (network->nb_output != nb_output)
return DNN_ERROR;
return DNN_SUCCESS;
}
DNNModel *ff_dnn_load_model_native(const char *model_filename)
{
DNNModel *model = NULL;
char header_expected[] = "FFMPEGDNNNATIVE";
char *buf;
size_t size;
int version, header_size, major_version_expected = 1;
ConvolutionalNetwork *network = NULL;
AVIOContext *model_file_context;
int file_size, dnn_size, parsed_size;
int32_t layer;
DNNLayerType layer_type;
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
return NULL;
}
file_size = avio_size(model_file_context);
model = av_mallocz(sizeof(DNNModel));
if (!model){
goto fail;
}
size = sizeof(header_expected);
buf = av_malloc(size);
if (!buf) {
goto fail;
}
avio_get_str(model_file_context, size - 1, buf, size);
dnn_size = size - 1;
if (strncmp(buf, header_expected, size) != 0) {
av_freep(&buf);
goto fail;
}
av_freep(&buf);
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (version != major_version_expected) {
goto fail;
}
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
header_size = dnn_size;
network = av_mallocz(sizeof(ConvolutionalNetwork));
if (!network){
goto fail;
}
model->model = (void *)network;
avio_seek(model_file_context, file_size - 8, SEEK_SET);
network->layers_num = (int32_t)avio_rl32(model_file_context);
network->operands_num = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
avio_seek(model_file_context, header_size, SEEK_SET);
network->layers = av_mallocz(network->layers_num * sizeof(Layer));
if (!network->layers){
goto fail;
}
network->operands = av_mallocz(network->operands_num * sizeof(DnnOperand));
if (!network->operands){
goto fail;
}
for (layer = 0; layer < network->layers_num; ++layer){
layer_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (layer_type >= DLT_COUNT) {
goto fail;
}
network->layers[layer].type = layer_type;
parsed_size = layer_funcs[layer_type].pf_load(&network->layers[layer], model_file_context, file_size, network->operands_num);
if (!parsed_size) {
goto fail;
}
dnn_size += parsed_size;
}
for (int32_t i = 0; i < network->operands_num; ++i){
DnnOperand *oprd;
int32_t name_len;
int32_t operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (operand_index >= network->operands_num) {
goto fail;
}
oprd = &network->operands[operand_index];
name_len = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name));
dnn_size += name_len;
oprd->type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
oprd->data_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
for (int32_t dim = 0; dim < 4; ++dim) {
oprd->dims[dim] = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
}
oprd->isNHWC = 1;
}
avio_closep(&model_file_context);
if (dnn_size != file_size){
ff_dnn_free_model_native(&model);
return NULL;
}
model->set_input_output = &set_input_output_native;
model->get_input = &get_input_native;
return model;
fail:
ff_dnn_free_model_native(&model);
avio_closep(&model_file_context);
return NULL;
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNData *outputs, uint32_t nb_output)
{
ConvolutionalNetwork *network = (ConvolutionalNetwork *)model->model;
int32_t layer;
uint32_t nb = FFMIN(nb_output, network->nb_output);
if (network->layers_num <= 0 || network->operands_num <= 0)
return DNN_ERROR;
if (!network->operands[0].data)
return DNN_ERROR;
for (layer = 0; layer < network->layers_num; ++layer){
DNNLayerType layer_type = network->layers[layer].type;
layer_funcs[layer_type].pf_exec(network->operands,
network->layers[layer].input_operand_indexes,
network->layers[layer].output_operand_index,
network->layers[layer].params);
}
for (uint32_t i = 0; i < nb; ++i) {
DnnOperand *oprd = &network->operands[network->output_indexes[i]];
outputs[i].data = oprd->data;
outputs[i].height = oprd->dims[1];
outputs[i].width = oprd->dims[2];
outputs[i].channels = oprd->dims[3];
outputs[i].dt = oprd->data_type;
}
return DNN_SUCCESS;
}
int32_t calculate_operand_dims_count(const DnnOperand *oprd)
{
int32_t result = 1;
for (int i = 0; i < 4; ++i)
result *= oprd->dims[i];
return result;
}
int32_t calculate_operand_data_length(const DnnOperand* oprd)
{
uint64_t len = sizeof(float);
for (int i = 0; i < 4; i++) {
len *= oprd->dims[i];
if (len > INT32_MAX)
return 0;
}
return len;
}
void ff_dnn_free_model_native(DNNModel **model)
{
ConvolutionalNetwork *network;
ConvolutionalParams *conv_params;
int32_t layer;
if (*model)
{
if ((*model)->model) {
network = (ConvolutionalNetwork *)(*model)->model;
if (network->layers) {
for (layer = 0; layer < network->layers_num; ++layer){
if (network->layers[layer].type == DLT_CONV2D){
conv_params = (ConvolutionalParams *)network->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
}
av_freep(&network->layers[layer].params);
}
av_freep(&network->layers);
}
if (network->operands) {
for (uint32_t operand = 0; operand < network->operands_num; ++operand)
av_freep(&network->operands[operand].data);
av_freep(&network->operands);
}
av_freep(&network->output_indexes);
av_freep(&network);
}
av_freep(model);
}
}