This source file includes following definitions.
- query_formats
- config_output
- request_frame
- read16_fft_bin
- read8_fft_bin
- read_fft_data
- synth_window
- try_push_frame
- try_push_frames
- filter_frame_magnitude
- filter_frame_phase
- uninit
#include "libavcodec/avfft.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "avfilter.h"
#include "formats.h"
#include "audio.h"
#include "video.h"
#include "internal.h"
#include "window_func.h"
enum MagnitudeScale { LINEAR, LOG, NB_SCALES };
enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES };
enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
typedef struct SpectrumSynthContext {
const AVClass *class;
int sample_rate;
int channels;
int scale;
int sliding;
int win_func;
float overlap;
int orientation;
AVFrame *magnitude, *phase;
FFTContext *fft;
int fft_bits;
FFTComplex **fft_data;
int win_size;
int size;
int nb_freq;
int hop_size;
int start, end;
int xpos;
int xend;
int64_t pts;
float factor;
AVFrame *buffer;
float *window_func_lut;
} SpectrumSynthContext;
#define OFFSET(x) offsetof(SpectrumSynthContext, x)
#define A AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_AUDIO_PARAM
#define V AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption spectrumsynth_options[] = {
{ "sample_rate", "set sample rate", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64 = 44100}, 15, INT_MAX, A },
{ "channels", "set channels", OFFSET(channels), AV_OPT_TYPE_INT, {.i64 = 1}, 1, 8, A },
{ "scale", "set input amplitude scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = LOG}, 0, NB_SCALES-1, V, "scale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, V, "scale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, V, "scale" },
{ "slide", "set input sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = FULLFRAME}, 0, NB_SLIDES-1, V, "slide" },
{ "replace", "consume old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, V, "slide" },
{ "scroll", "consume only most right column", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, V, "slide" },
{ "fullframe", "consume full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, V, "slide" },
{ "rscroll", "consume only most left column", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, V, "slide" },
{ "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_WFUNC-1, A, "win_func" },
{ "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, A, "win_func" },
{ "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, A, "win_func" },
{ "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, A, "win_func" },
{ "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, A, "win_func" },
{ "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, A, "win_func" },
{ "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, A, "win_func" },
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, A },
{ "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, V, "orientation" },
{ "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, V, "orientation" },
{ "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, V, "orientation" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(spectrumsynth);
static int query_formats(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layout = NULL;
AVFilterLink *magnitude = ctx->inputs[0];
AVFilterLink *phase = ctx->inputs[1];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV444P16, AV_PIX_FMT_NONE };
int ret, sample_rates[] = { 48000, -1 };
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref (formats, &outlink->in_formats )) < 0 ||
(ret = ff_add_channel_layout (&layout, FF_COUNT2LAYOUT(s->channels))) < 0 ||
(ret = ff_channel_layouts_ref (layout , &outlink->in_channel_layouts)) < 0)
return ret;
sample_rates[0] = s->sample_rate;
formats = ff_make_format_list(sample_rates);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &magnitude->out_formats)) < 0)
return ret;
formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
if ((ret = ff_formats_ref(formats, &phase->out_formats)) < 0)
return ret;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SpectrumSynthContext *s = ctx->priv;
int width = ctx->inputs[0]->w;
int height = ctx->inputs[0]->h;
AVRational time_base = ctx->inputs[0]->time_base;
AVRational frame_rate = ctx->inputs[0]->frame_rate;
int i, ch, fft_bits;
float factor, overlap;
outlink->sample_rate = s->sample_rate;
outlink->time_base = (AVRational){1, s->sample_rate};
if (width != ctx->inputs[1]->w ||
height != ctx->inputs[1]->h) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase sizes differ (%dx%d vs %dx%d).\n",
width, height,
ctx->inputs[1]->w, ctx->inputs[1]->h);
return AVERROR_INVALIDDATA;
} else if (av_cmp_q(time_base, ctx->inputs[1]->time_base) != 0) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase time bases differ (%d/%d vs %d/%d).\n",
time_base.num, time_base.den,
ctx->inputs[1]->time_base.num,
ctx->inputs[1]->time_base.den);
return AVERROR_INVALIDDATA;
} else if (av_cmp_q(frame_rate, ctx->inputs[1]->frame_rate) != 0) {
av_log(ctx, AV_LOG_ERROR,
"Magnitude and Phase framerates differ (%d/%d vs %d/%d).\n",
frame_rate.num, frame_rate.den,
ctx->inputs[1]->frame_rate.num,
ctx->inputs[1]->frame_rate.den);
return AVERROR_INVALIDDATA;
}
s->size = s->orientation == VERTICAL ? height / s->channels : width / s->channels;
s->xend = s->orientation == VERTICAL ? width : height;
for (fft_bits = 1; 1 << fft_bits < 2 * s->size; fft_bits++);
s->win_size = 1 << fft_bits;
s->nb_freq = 1 << (fft_bits - 1);
s->fft = av_fft_init(fft_bits, 1);
if (!s->fft) {
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
"The window size might be too high.\n");
return AVERROR(EINVAL);
}
s->fft_data = av_calloc(s->channels, sizeof(*s->fft_data));
if (!s->fft_data)
return AVERROR(ENOMEM);
for (ch = 0; ch < s->channels; ch++) {
s->fft_data[ch] = av_calloc(s->win_size, sizeof(**s->fft_data));
if (!s->fft_data[ch])
return AVERROR(ENOMEM);
}
s->buffer = ff_get_audio_buffer(outlink, s->win_size * 2);
if (!s->buffer)
return AVERROR(ENOMEM);
s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
if (s->overlap == 1)
s->overlap = overlap;
s->hop_size = (1 - s->overlap) * s->win_size;
for (factor = 0, i = 0; i < s->win_size; i++) {
factor += s->window_func_lut[i] * s->window_func_lut[i];
}
s->factor = (factor / s->win_size) / FFMAX(1 / (1 - s->overlap) - 1, 1);
return 0;
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SpectrumSynthContext *s = ctx->priv;
int ret;
if (!s->magnitude) {
ret = ff_request_frame(ctx->inputs[0]);
if (ret < 0)
return ret;
}
if (!s->phase) {
ret = ff_request_frame(ctx->inputs[1]);
if (ret < 0)
return ret;
}
return 0;
}
static void read16_fft_bin(SpectrumSynthContext *s,
int x, int y, int f, int ch)
{
const int m_linesize = s->magnitude->linesize[0];
const int p_linesize = s->phase->linesize[0];
const uint16_t *m = (uint16_t *)(s->magnitude->data[0] + y * m_linesize);
const uint16_t *p = (uint16_t *)(s->phase->data[0] + y * p_linesize);
float magnitude, phase;
switch (s->scale) {
case LINEAR:
magnitude = m[x] / (double)UINT16_MAX;
break;
case LOG:
magnitude = ff_exp10(((m[x] / (double)UINT16_MAX) - 1.) * 6.);
break;
default:
av_assert0(0);
}
phase = ((p[x] / (double)UINT16_MAX) * 2. - 1.) * M_PI;
s->fft_data[ch][f].re = magnitude * cos(phase);
s->fft_data[ch][f].im = magnitude * sin(phase);
}
static void read8_fft_bin(SpectrumSynthContext *s,
int x, int y, int f, int ch)
{
const int m_linesize = s->magnitude->linesize[0];
const int p_linesize = s->phase->linesize[0];
const uint8_t *m = (uint8_t *)(s->magnitude->data[0] + y * m_linesize);
const uint8_t *p = (uint8_t *)(s->phase->data[0] + y * p_linesize);
float magnitude, phase;
switch (s->scale) {
case LINEAR:
magnitude = m[x] / (double)UINT8_MAX;
break;
case LOG:
magnitude = ff_exp10(((m[x] / (double)UINT8_MAX) - 1.) * 6.);
break;
default:
av_assert0(0);
}
phase = ((p[x] / (double)UINT8_MAX) * 2. - 1.) * M_PI;
s->fft_data[ch][f].re = magnitude * cos(phase);
s->fft_data[ch][f].im = magnitude * sin(phase);
}
static void read_fft_data(AVFilterContext *ctx, int x, int h, int ch)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int start = h * (s->channels - ch) - 1;
int end = h * (s->channels - ch - 1);
int y, f;
switch (s->orientation) {
case VERTICAL:
switch (inlink->format) {
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_GRAY16:
for (y = start, f = 0; y >= end; y--, f++) {
read16_fft_bin(s, x, y, f, ch);
}
break;
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_GRAY8:
for (y = start, f = 0; y >= end; y--, f++) {
read8_fft_bin(s, x, y, f, ch);
}
break;
}
break;
case HORIZONTAL:
switch (inlink->format) {
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_GRAY16:
for (y = end, f = 0; y <= start; y++, f++) {
read16_fft_bin(s, y, x, f, ch);
}
break;
case AV_PIX_FMT_YUVJ444P:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_GRAY8:
for (y = end, f = 0; y <= start; y++, f++) {
read8_fft_bin(s, y, x, f, ch);
}
break;
}
break;
}
}
static void synth_window(AVFilterContext *ctx, int x)
{
SpectrumSynthContext *s = ctx->priv;
const int h = s->size;
int nb = s->win_size;
int y, f, ch;
for (ch = 0; ch < s->channels; ch++) {
read_fft_data(ctx, x, h, ch);
for (y = h; y <= s->nb_freq; y++) {
s->fft_data[ch][y].re = 0;
s->fft_data[ch][y].im = 0;
}
for (y = s->nb_freq + 1, f = s->nb_freq - 1; y < nb; y++, f--) {
s->fft_data[ch][y].re = s->fft_data[ch][f].re;
s->fft_data[ch][y].im = -s->fft_data[ch][f].im;
}
av_fft_permute(s->fft, s->fft_data[ch]);
av_fft_calc(s->fft, s->fft_data[ch]);
}
}
static int try_push_frame(AVFilterContext *ctx, int x)
{
SpectrumSynthContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
const float factor = s->factor;
int ch, n, i, ret;
int start, end;
AVFrame *out;
synth_window(ctx, x);
for (ch = 0; ch < s->channels; ch++) {
float *buf = (float *)s->buffer->extended_data[ch];
int j, k;
start = s->start;
end = s->end;
k = end;
for (i = 0, j = start; j < k && i < s->win_size; i++, j++) {
buf[j] += s->fft_data[ch][i].re;
}
for (; i < s->win_size; i++, j++) {
buf[j] = s->fft_data[ch][i].re;
}
start += s->hop_size;
end = j;
if (start >= s->win_size) {
start -= s->win_size;
end -= s->win_size;
if (ch == s->channels - 1) {
float *dst;
int c;
out = ff_get_audio_buffer(outlink, s->win_size);
if (!out) {
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
return AVERROR(ENOMEM);
}
out->pts = s->pts;
s->pts += s->win_size;
for (c = 0; c < s->channels; c++) {
dst = (float *)out->extended_data[c];
buf = (float *)s->buffer->extended_data[c];
for (n = 0; n < s->win_size; n++) {
dst[n] = buf[n] * factor;
}
memmove(buf, buf + s->win_size, s->win_size * 4);
}
ret = ff_filter_frame(outlink, out);
if (ret < 0)
return ret;
}
}
}
s->start = start;
s->end = end;
return 0;
}
static int try_push_frames(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
int ret, x;
if (!(s->magnitude && s->phase))
return 0;
switch (s->sliding) {
case REPLACE:
ret = try_push_frame(ctx, s->xpos);
s->xpos++;
if (s->xpos >= s->xend)
s->xpos = 0;
break;
case SCROLL:
s->xpos = s->xend - 1;
ret = try_push_frame(ctx, s->xpos);
break;
case RSCROLL:
s->xpos = 0;
ret = try_push_frame(ctx, s->xpos);
break;
case FULLFRAME:
for (x = 0; x < s->xend; x++) {
ret = try_push_frame(ctx, x);
if (ret < 0)
break;
}
break;
default:
av_assert0(0);
}
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
return ret;
}
static int filter_frame_magnitude(AVFilterLink *inlink, AVFrame *magnitude)
{
AVFilterContext *ctx = inlink->dst;
SpectrumSynthContext *s = ctx->priv;
s->magnitude = magnitude;
return try_push_frames(ctx);
}
static int filter_frame_phase(AVFilterLink *inlink, AVFrame *phase)
{
AVFilterContext *ctx = inlink->dst;
SpectrumSynthContext *s = ctx->priv;
s->phase = phase;
return try_push_frames(ctx);
}
static av_cold void uninit(AVFilterContext *ctx)
{
SpectrumSynthContext *s = ctx->priv;
int i;
av_frame_free(&s->magnitude);
av_frame_free(&s->phase);
av_frame_free(&s->buffer);
av_fft_end(s->fft);
if (s->fft_data) {
for (i = 0; i < s->channels; i++)
av_freep(&s->fft_data[i]);
}
av_freep(&s->fft_data);
av_freep(&s->window_func_lut);
}
static const AVFilterPad spectrumsynth_inputs[] = {
{
.name = "magnitude",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame_magnitude,
.needs_fifo = 1,
},
{
.name = "phase",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame_phase,
.needs_fifo = 1,
},
{ NULL }
};
static const AVFilterPad spectrumsynth_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
.request_frame = request_frame,
},
{ NULL }
};
AVFilter ff_vaf_spectrumsynth = {
.name = "spectrumsynth",
.description = NULL_IF_CONFIG_SMALL("Convert input spectrum videos to audio output."),
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(SpectrumSynthContext),
.inputs = spectrumsynth_inputs,
.outputs = spectrumsynth_outputs,
.priv_class = &spectrumsynth_class,
};