This source file includes following definitions.
- flt16_round
- flt16_even
- flt16_trunc
- predict
- reset_predict_state
- reset_all_predictors
- reset_predictor_group
- ff_aac_apply_main_pred
- update_counters
- ff_aac_adjust_common_pred
- update_pred_resets
- ff_aac_search_for_pred
- ff_aac_encode_main_pred
#include "aactab.h"
#include "aacenc_pred.h"
#include "aacenc_utils.h"
#include "aacenc_is.h"
#include "aacenc_quantization.h"
#define RESTORE_PRED(sce, sfb) \
if (sce->ics.prediction_used[sfb]) {\
sce->ics.prediction_used[sfb] = 0;\
sce->band_type[sfb] = sce->band_alt[sfb];\
}
static inline float flt16_round(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_even(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_trunc(float pf)
{
union av_intfloat32 pun;
pun.f = pf;
pun.i &= 0xFFFF0000U;
return pun.f;
}
static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
{
float k2;
const float a = 0.953125;
const float alpha = 0.90625;
const float k1 = ps->k1;
const float r0 = ps->r0, r1 = ps->r1;
const float cor0 = ps->cor0, cor1 = ps->cor1;
const float var0 = ps->var0, var1 = ps->var1;
const float e0 = *coef - ps->x_est;
const float e1 = e0 - k1 * r0;
if (set)
*coef = e0;
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
ps->r0 = flt16_trunc(a * e0);
ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
*rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
}
static inline void reset_predict_state(PredictorState *ps)
{
ps->r0 = 0.0f;
ps->r1 = 0.0f;
ps->k1 = 0.0f;
ps->cor0 = 0.0f;
ps->cor1 = 0.0f;
ps->var0 = 1.0f;
ps->var1 = 1.0f;
ps->x_est = 0.0f;
}
static inline void reset_all_predictors(PredictorState *ps)
{
int i;
for (i = 0; i < MAX_PREDICTORS; i++)
reset_predict_state(&ps[i]);
}
static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
{
int i;
PredictorState *ps = sce->predictor_state;
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
reset_predict_state(&ps[i]);
}
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, k;
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
for (sfb = 0; sfb < pmax; sfb++) {
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
}
}
if (sce->ics.predictor_reset_group) {
reset_predictor_group(sce, sce->ics.predictor_reset_group);
}
} else {
reset_all_predictors(sce->predictor_state);
}
}
static inline int update_counters(IndividualChannelStream *ics, int inc)
{
int i;
for (i = 1; i < 31; i++) {
ics->predictor_reset_count[i] += inc;
if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
return i;
}
return 0;
}
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
{
int start, w, w2, g, i, count = 0;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
const int pmax = FFMIN(pmax0, pmax1);
if (!cpe->common_window ||
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) {
int sfb = w*16+g;
int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
struct AACISError ph_err1, ph_err2, *erf;
if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
RESTORE_PRED(sce0, sfb);
RESTORE_PRED(sce1, sfb);
start += sce0->ics.swb_sizes[g];
continue;
}
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
ener0 += coef0*coef0;
ener1 += coef1*coef1;
ener01 += (coef0 + coef1)*(coef0 + coef1);
}
}
ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01, 1, -1);
ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01, 1, +1);
erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
if (erf->pass) {
sce0->ics.prediction_used[sfb] = 1;
sce1->ics.prediction_used[sfb] = 1;
count++;
} else {
RESTORE_PRED(sce0, sfb);
RESTORE_PRED(sce1, sfb);
}
start += sce0->ics.swb_sizes[g];
}
}
sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
}
static void update_pred_resets(SingleChannelElement *sce)
{
int i, max_group_id_c, max_frame = 0;
float avg_frame = 0.0f;
IndividualChannelStream *ics = &sce->ics;
if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
return;
for (i = 1; i < 31; i++) {
if (ics->predictor_reset_count[i] > max_frame) {
max_group_id_c = i;
max_frame = ics->predictor_reset_count[i];
}
avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
}
if (max_frame > PRED_RESET_MIN) {
ics->predictor_reset_group = max_group_id_c;
} else {
ics->predictor_reset_group = 0;
}
}
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
float *QERR = &s->scoefs[128*4];
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
sce->ics.predictor_present = 0;
return;
}
if (!sce->ics.predictor_initialized) {
reset_all_predictors(sce->predictor_state);
sce->ics.predictor_initialized = 1;
memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
for (i = 1; i < 31; i++)
sce->ics.predictor_reset_count[i] = i;
}
update_pred_resets(sce);
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
int cost1, cost2, cb_p;
float dist1, dist2, dist_spec_err = 0.0f;
const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
const int cb_min = sce->zeroes[sfb] ? 0 : 1;
const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
const int start_coef = sce->ics.swb_offset[sfb];
const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
if (start_coef + num_coeffs > MAX_PREDICTORS ||
(s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
sce->band_type[sfb] == NOISE_BT)
continue;
s->abs_pow34(O34, &sce->coeffs[start_coef], num_coeffs);
dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
O34, num_coeffs, sce->sf_idx[sfb],
cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
cost_coeffs += cost1;
for (i = 0; i < num_coeffs; i++)
SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
s->abs_pow34(S34, SENT, num_coeffs);
if (cb_n < RESERVED_BT)
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
else
cb_p = cb_n;
quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
&cost2, NULL, 0);
for (i = 0; i < num_coeffs; i++)
sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
s->abs_pow34(P34, &sce->prcoeffs[start_coef], num_coeffs);
if (cb_n < RESERVED_BT)
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
else
cb_p = cb_n;
dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
P34, num_coeffs, sce->sf_idx[sfb],
cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
for (i = 0; i < num_coeffs; i++)
dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
dist_spec_err *= s->lambda / band->threshold;
dist2 += dist_spec_err;
if (dist2 <= dist1 && cb_p <= cb_n) {
cost_pred += cost2;
sce->ics.prediction_used[sfb] = 1;
sce->band_alt[sfb] = cb_n;
sce->band_type[sfb] = cb_p;
count++;
} else {
cost_pred += cost1;
sce->band_alt[sfb] = cb_p;
}
}
if (count && cost_coeffs < cost_pred) {
count = 0;
for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
RESTORE_PRED(sce, sfb);
memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
}
sce->ics.predictor_present = !!count;
}
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb;
IndividualChannelStream *ics = &sce->ics;
const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
if (s->profile != FF_PROFILE_AAC_MAIN ||
!ics->predictor_present)
return;
put_bits(&s->pb, 1, !!ics->predictor_reset_group);
if (ics->predictor_reset_group)
put_bits(&s->pb, 5, ics->predictor_reset_group);
for (sfb = 0; sfb < pmax; sfb++)
put_bits(&s->pb, 1, ics->prediction_used[sfb]);
}