root/src/pkg/runtime/softfloat_arm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fabort
  2. putf
  3. putd
  4. getd
  5. fprint
  6. d2f
  7. f2d
  8. fstatus
  9. stepflt
  10. runtime·_sfloat2

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Software floating point interpretaton of ARM 7500 FP instructions.
// The interpretation is not bit compatible with the 7500.
// It uses true little-endian doubles, while the 7500 used mixed-endian.

#include "runtime.h"
#include "../../cmd/ld/textflag.h"

#define CPSR 14
#define FLAGS_N (1U << 31)
#define FLAGS_Z (1U << 30)
#define FLAGS_C (1U << 29)
#define FLAGS_V (1U << 28)

void    runtime·abort(void);
void    runtime·sqrtC(uint64, uint64*);

static  uint32  trace = 0;

static void
fabort(void)
{
        if (1) {
                runtime·printf("Unsupported floating point instruction\n");
                runtime·abort();
        }
}

static void
putf(uint32 reg, uint32 val)
{
        m->freglo[reg] = val;
}

static void
putd(uint32 reg, uint64 val)
{
        m->freglo[reg] = (uint32)val;
        m->freghi[reg] = (uint32)(val>>32);
}

static uint64
getd(uint32 reg)
{
        return (uint64)m->freglo[reg] | ((uint64)m->freghi[reg]<<32);
}

static void
fprint(void)
{
        uint32 i;
        for (i = 0; i < 16; i++) {
                runtime·printf("\tf%d:\t%X %X\n", i, m->freghi[i], m->freglo[i]);
        }
}

static uint32
d2f(uint64 d)
{
        uint32 x;

        runtime·f64to32c(d, &x);
        return x;
}

static uint64
f2d(uint32 f)
{
        uint64 x;

        runtime·f32to64c(f, &x);
        return x;
}

static uint32
fstatus(bool nan, int32 cmp)
{
        if(nan)
                return FLAGS_C | FLAGS_V;
        if(cmp == 0)
                return FLAGS_Z | FLAGS_C;
        if(cmp < 0)
                return FLAGS_N;
        return FLAGS_C;
}

// conditions array record the required CPSR cond field for the
// first 5 pairs of conditional execution opcodes
// higher 4 bits are must set, lower 4 bits are must clear
static const uint8 conditions[10/2] = {
        [0/2] = (FLAGS_Z >> 24) | 0, // 0: EQ (Z set), 1: NE (Z clear)
        [2/2] = (FLAGS_C >> 24) | 0, // 2: CS/HS (C set), 3: CC/LO (C clear)
        [4/2] = (FLAGS_N >> 24) | 0, // 4: MI (N set), 5: PL (N clear)
        [6/2] = (FLAGS_V >> 24) | 0, // 6: VS (V set), 7: VC (V clear)
        [8/2] = (FLAGS_C >> 24) | 
                (FLAGS_Z >> 28),     // 8: HI (C set and Z clear), 9: LS (C clear and Z set)
};

// returns number of words that the fp instruction
// is occupying, 0 if next instruction isn't float.
static uint32
stepflt(uint32 *pc, uint32 *regs)
{
        uint32 i, opc, regd, regm, regn, cpsr;
        int32 delta;
        uint32 *addr;
        uint64 uval;
        int64 sval;
        bool nan, ok;
        int32 cmp;

        i = *pc;

        if(trace)
                runtime·printf("stepflt %p %x (cpsr %x)\n", pc, i, regs[CPSR] >> 28);

        opc = i >> 28;
        if(opc == 14) // common case first
                goto execute;
        cpsr = regs[CPSR] >> 28;
        switch(opc) {
        case 0: case 1: case 2: case 3: case 4: 
        case 5: case 6: case 7: case 8: case 9:
                if(((cpsr & (conditions[opc/2] >> 4)) == (conditions[opc/2] >> 4)) &&
                   ((cpsr & (conditions[opc/2] & 0xf)) == 0)) {
                        if(opc & 1) return 1;
                } else {
                        if(!(opc & 1)) return 1;
                }
                break;
        case 10: // GE (N == V)
        case 11: // LT (N != V)
                if((cpsr & (FLAGS_N >> 28)) == (cpsr & (FLAGS_V >> 28))) {
                        if(opc & 1) return 1;
                } else {
                        if(!(opc & 1)) return 1;
                }
                break;
        case 12: // GT (N == V and Z == 0)
        case 13: // LE (N != V or Z == 1)
                if((cpsr & (FLAGS_N >> 28)) == (cpsr & (FLAGS_V >> 28)) &&
                   (cpsr & (FLAGS_Z >> 28)) == 0) {
                        if(opc & 1) return 1;
                } else {
                        if(!(opc & 1)) return 1;
                }
                break;
        case 14: // AL
                break;
        case 15: // shouldn't happen
                return 0;
        }
        if(trace)
                runtime·printf("conditional %x (cpsr %x) pass\n", opc, cpsr);
        i = (0xeU << 28) | (i & 0xfffffff);

execute:
        // special cases
        if((i&0xfffff000) == 0xe59fb000) {
                // load r11 from pc-relative address.
                // might be part of a floating point move
                // (or might not, but no harm in simulating
                // one instruction too many).
                addr = (uint32*)((uint8*)pc + (i&0xfff) + 8);
                regs[11] = addr[0];

                if(trace)
                        runtime·printf("*** cpu R[%d] = *(%p) %x\n",
                                11, addr, regs[11]);
                return 1;
        }
        if(i == 0xe08bb00d) {
                // add sp to r11.
                // might be part of a large stack offset address
                // (or might not, but again no harm done).
                regs[11] += regs[13];

                if(trace)
                        runtime·printf("*** cpu R[%d] += R[%d] %x\n",
                                11, 13, regs[11]);
                return 1;
        }
        if(i == 0xeef1fa10) {
                regs[CPSR] = (regs[CPSR]&0x0fffffff) | m->fflag;

                if(trace)
                        runtime·printf("*** fpsr R[CPSR] = F[CPSR] %x\n", regs[CPSR]);
                return 1;
        }
        if((i&0xff000000) == 0xea000000) {
                // unconditional branch
                // can happen in the middle of floating point
                // if the linker decides it is time to lay down
                // a sequence of instruction stream constants.
                delta = i&0xffffff;
                delta = (delta<<8) >> 8;        // sign extend

                if(trace)
                        runtime·printf("*** cpu PC += %x\n", (delta+2)*4);
                return delta+2;
        }

        goto stage1;

stage1: // load/store regn is cpureg, regm is 8bit offset
        regd = i>>12 & 0xf;
        regn = i>>16 & 0xf;
        regm = (i & 0xff) << 2; // PLUS or MINUS ??

        switch(i & 0xfff00f00) {
        default:
                goto stage2;

        case 0xed900a00:        // single load
                addr = (uint32*)(regs[regn] + regm);
                m->freglo[regd] = addr[0];

                if(trace)
                        runtime·printf("*** load F[%d] = %x\n",
                                regd, m->freglo[regd]);
                break;

        case 0xed900b00:        // double load
                addr = (uint32*)(regs[regn] + regm);
                m->freglo[regd] = addr[0];
                m->freghi[regd] = addr[1];

                if(trace)
                        runtime·printf("*** load D[%d] = %x-%x\n",
                                regd, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xed800a00:        // single store
                addr = (uint32*)(regs[regn] + regm);
                addr[0] = m->freglo[regd];

                if(trace)
                        runtime·printf("*** *(%p) = %x\n",
                                addr, addr[0]);
                break;

        case 0xed800b00:        // double store
                addr = (uint32*)(regs[regn] + regm);
                addr[0] = m->freglo[regd];
                addr[1] = m->freghi[regd];

                if(trace)
                        runtime·printf("*** *(%p) = %x-%x\n",
                                addr, addr[1], addr[0]);
                break;
        }
        return 1;

stage2: // regd, regm, regn are 4bit variables
        regm = i>>0 & 0xf;
        switch(i & 0xfff00ff0) {
        default:
                goto stage3;

        case 0xf3000110:        // veor
                m->freglo[regd] = m->freglo[regm]^m->freglo[regn];
                m->freghi[regd] = m->freghi[regm]^m->freghi[regn];

                if(trace)
                        runtime·printf("*** veor D[%d] = %x-%x\n",
                                regd, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb00b00:        // D[regd] = const(regn,regm)
                regn = (regn<<4) | regm;
                regm = 0x40000000UL;
                if(regn & 0x80)
                        regm |= 0x80000000UL;
                if(regn & 0x40)
                        regm ^= 0x7fc00000UL;
                regm |= (regn & 0x3f) << 16;
                m->freglo[regd] = 0;
                m->freghi[regd] = regm;

                if(trace)
                        runtime·printf("*** immed D[%d] = %x-%x\n",
                                regd, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb00a00:        // F[regd] = const(regn,regm)
                regn = (regn<<4) | regm;
                regm = 0x40000000UL;
                if(regn & 0x80)
                        regm |= 0x80000000UL;
                if(regn & 0x40)
                        regm ^= 0x7e000000UL;
                regm |= (regn & 0x3f) << 19;
                m->freglo[regd] = regm;

                if(trace)
                        runtime·printf("*** immed D[%d] = %x\n",
                                regd, m->freglo[regd]);
                break;

        case 0xee300b00:        // D[regd] = D[regn]+D[regm]
                runtime·fadd64c(getd(regn), getd(regm), &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** add D[%d] = D[%d]+D[%d] %x-%x\n",
                                regd, regn, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xee300a00:        // F[regd] = F[regn]+F[regm]
                runtime·fadd64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval);
                m->freglo[regd] = d2f(uval);

                if(trace)
                        runtime·printf("*** add F[%d] = F[%d]+F[%d] %x\n",
                                regd, regn, regm, m->freglo[regd]);
                break;

        case 0xee300b40:        // D[regd] = D[regn]-D[regm]
                runtime·fsub64c(getd(regn), getd(regm), &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** sub D[%d] = D[%d]-D[%d] %x-%x\n",
                                regd, regn, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xee300a40:        // F[regd] = F[regn]-F[regm]
                runtime·fsub64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval);
                m->freglo[regd] = d2f(uval);

                if(trace)
                        runtime·printf("*** sub F[%d] = F[%d]-F[%d] %x\n",
                                regd, regn, regm, m->freglo[regd]);
                break;

        case 0xee200b00:        // D[regd] = D[regn]*D[regm]
                runtime·fmul64c(getd(regn), getd(regm), &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** mul D[%d] = D[%d]*D[%d] %x-%x\n",
                                regd, regn, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xee200a00:        // F[regd] = F[regn]*F[regm]
                runtime·fmul64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval);
                m->freglo[regd] = d2f(uval);

                if(trace)
                        runtime·printf("*** mul F[%d] = F[%d]*F[%d] %x\n",
                                regd, regn, regm, m->freglo[regd]);
                break;

        case 0xee800b00:        // D[regd] = D[regn]/D[regm]
                runtime·fdiv64c(getd(regn), getd(regm), &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** div D[%d] = D[%d]/D[%d] %x-%x\n",
                                regd, regn, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xee800a00:        // F[regd] = F[regn]/F[regm]
                runtime·fdiv64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval);
                m->freglo[regd] = d2f(uval);

                if(trace)
                        runtime·printf("*** div F[%d] = F[%d]/F[%d] %x\n",
                                regd, regn, regm, m->freglo[regd]);
                break;

        case 0xee000b10:        // S[regn] = R[regd] (MOVW) (regm ignored)
                m->freglo[regn] = regs[regd];

                if(trace)
                        runtime·printf("*** cpy S[%d] = R[%d] %x\n",
                                regn, regd, m->freglo[regn]);
                break;

        case 0xee100b10:        // R[regd] = S[regn] (MOVW) (regm ignored)
                regs[regd] = m->freglo[regn];

                if(trace)
                        runtime·printf("*** cpy R[%d] = S[%d] %x\n",
                                regd, regn, regs[regd]);
                break;
        }
        return 1;

stage3: // regd, regm are 4bit variables
        switch(i & 0xffff0ff0) {
        default:
                goto done;

        case 0xeeb00a40:        // F[regd] = F[regm] (MOVF)
                m->freglo[regd] = m->freglo[regm];

                if(trace)
                        runtime·printf("*** F[%d] = F[%d] %x\n",
                                regd, regm, m->freglo[regd]);
                break;

        case 0xeeb00b40:        // D[regd] = D[regm] (MOVD)
                m->freglo[regd] = m->freglo[regm];
                m->freghi[regd] = m->freghi[regm];

                if(trace)
                        runtime·printf("*** D[%d] = D[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb10bc0:        // D[regd] = sqrt D[regm]
                runtime·sqrtC(getd(regm), &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** D[%d] = sqrt D[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb00bc0:        // D[regd] = abs D[regm]
                m->freglo[regd] = m->freglo[regm];
                m->freghi[regd] = m->freghi[regm] & ((1<<31)-1);

                if(trace)
                        runtime·printf("*** D[%d] = abs D[%d] %x-%x\n",
                                        regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb00ac0:        // F[regd] = abs F[regm]
                m->freglo[regd] = m->freglo[regm] & ((1<<31)-1);

                if(trace)
                        runtime·printf("*** F[%d] = abs F[%d] %x\n",
                                        regd, regm, m->freglo[regd]);
                break;

        case 0xeeb40bc0:        // D[regd] :: D[regm] (CMPD)
                runtime·fcmp64c(getd(regd), getd(regm), &cmp, &nan);
                m->fflag = fstatus(nan, cmp);

                if(trace)
                        runtime·printf("*** cmp D[%d]::D[%d] %x\n",
                                regd, regm, m->fflag);
                break;

        case 0xeeb40ac0:        // F[regd] :: F[regm] (CMPF)
                runtime·fcmp64c(f2d(m->freglo[regd]), f2d(m->freglo[regm]), &cmp, &nan);
                m->fflag = fstatus(nan, cmp);

                if(trace)
                        runtime·printf("*** cmp F[%d]::F[%d] %x\n",
                                regd, regm, m->fflag);
                break;

        case 0xeeb70ac0:        // D[regd] = F[regm] (MOVFD)
                putd(regd, f2d(m->freglo[regm]));

                if(trace)
                        runtime·printf("*** f2d D[%d]=F[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb70bc0:        // F[regd] = D[regm] (MOVDF)
                m->freglo[regd] = d2f(getd(regm));

                if(trace)
                        runtime·printf("*** d2f F[%d]=D[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeebd0ac0:        // S[regd] = F[regm] (MOVFW)
                runtime·f64tointc(f2d(m->freglo[regm]), &sval, &ok);
                if(!ok || (int32)sval != sval)
                        sval = 0;
                m->freglo[regd] = sval;

                if(trace)
                        runtime·printf("*** fix S[%d]=F[%d] %x\n",
                                regd, regm, m->freglo[regd]);
                break;

        case 0xeebc0ac0:        // S[regd] = F[regm] (MOVFW.U)
                runtime·f64tointc(f2d(m->freglo[regm]), &sval, &ok);
                if(!ok || (uint32)sval != sval)
                        sval = 0;
                m->freglo[regd] = sval;

                if(trace)
                        runtime·printf("*** fix unsigned S[%d]=F[%d] %x\n",
                                regd, regm, m->freglo[regd]);
                break;

        case 0xeebd0bc0:        // S[regd] = D[regm] (MOVDW)
                runtime·f64tointc(getd(regm), &sval, &ok);
                if(!ok || (int32)sval != sval)
                        sval = 0;
                m->freglo[regd] = sval;

                if(trace)
                        runtime·printf("*** fix S[%d]=D[%d] %x\n",
                                regd, regm, m->freglo[regd]);
                break;

        case 0xeebc0bc0:        // S[regd] = D[regm] (MOVDW.U)
                runtime·f64tointc(getd(regm), &sval, &ok);
                if(!ok || (uint32)sval != sval)
                        sval = 0;
                m->freglo[regd] = sval;

                if(trace)
                        runtime·printf("*** fix unsigned S[%d]=D[%d] %x\n",
                                regd, regm, m->freglo[regd]);
                break;

        case 0xeeb80ac0:        // D[regd] = S[regm] (MOVWF)
                cmp = m->freglo[regm];
                if(cmp < 0) {
                        runtime·fintto64c(-cmp, &uval);
                        putf(regd, d2f(uval));
                        m->freglo[regd] ^= 0x80000000;
                } else {
                        runtime·fintto64c(cmp, &uval);
                        putf(regd, d2f(uval));
                }

                if(trace)
                        runtime·printf("*** float D[%d]=S[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb80a40:        // D[regd] = S[regm] (MOVWF.U)
                runtime·fintto64c(m->freglo[regm], &uval);
                putf(regd, d2f(uval));

                if(trace)
                        runtime·printf("*** float unsigned D[%d]=S[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb80bc0:        // D[regd] = S[regm] (MOVWD)
                cmp = m->freglo[regm];
                if(cmp < 0) {
                        runtime·fintto64c(-cmp, &uval);
                        putd(regd, uval);
                        m->freghi[regd] ^= 0x80000000;
                } else {
                        runtime·fintto64c(cmp, &uval);
                        putd(regd, uval);
                }

                if(trace)
                        runtime·printf("*** float D[%d]=S[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;

        case 0xeeb80b40:        // D[regd] = S[regm] (MOVWD.U)
                runtime·fintto64c(m->freglo[regm], &uval);
                putd(regd, uval);

                if(trace)
                        runtime·printf("*** float unsigned D[%d]=S[%d] %x-%x\n",
                                regd, regm, m->freghi[regd], m->freglo[regd]);
                break;
        }
        return 1;

done:
        if((i&0xff000000) == 0xee000000 ||
           (i&0xff000000) == 0xed000000) {
                runtime·printf("stepflt %p %x\n", pc, i);
                fabort();
        }
        return 0;
}

typedef struct Sfregs Sfregs;

// NOTE: These are all recorded as pointers because they are possibly live registers,
// and we don't know what they contain. Recording them as pointers should be
// safer than not.
struct Sfregs
{
        uint32 *r0;
        uint32 *r1;
        uint32 *r2;
        uint32 *r3;
        uint32 *r4;
        uint32 *r5;
        uint32 *r6;
        uint32 *r7;
        uint32 *r8;
        uint32 *r9;
        uint32 *r10;
        uint32 *r11;
        uint32 *r12;
        uint32 *r13;
        uint32 cspr;
};

#pragma textflag NOSPLIT
uint32*
runtime·_sfloat2(uint32 *lr, Sfregs regs)
{
        uint32 skip;

        skip = stepflt(lr, (uint32*)&regs.r0);
        if(skip == 0) {
                runtime·printf("sfloat2 %p %x\n", lr, *lr);
                fabort(); // not ok to fail first instruction
        }

        lr += skip;
        while(skip = stepflt(lr, (uint32*)&regs.r0))
                lr += skip;
        return lr;
}

/* [<][>][^][v][top][bottom][index][help] */