root/modules/xvid_dec/xvid_wce/gmc.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Predict_16x16_C
  2. Predict_8x8_C
  3. get_average_mv_C
  4. Predict_1pt_16x16_C
  5. Predict_1pt_8x8_C
  6. get_average_mv_1pt_C
  7. generate_GMCparameters

/*****************************************************************************
 *
 *  XVID MPEG-4 VIDEO CODEC
 *  - GMC interpolation module -
 *
 *  Copyright(C) 2002-2003 Pascal Massimino <skal@planet-d.net>
 *
 *  This program is free software ; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation ; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY ; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program ; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 * $Id: gmc.cpp,v 1.1.1.1 2005-07-13 14:36:14 jeanlf Exp $
 *
 ****************************************************************************/

#include "portab.h"
#include "global.h"
#include "gmc.h"

/* ************************************************************
 * Pts = 2 or 3
 *
 * Warning! *src is the global frame pointer (that is: address
 * of pixel 0,0), not the macroblock one.
 * Conversely, *dst is the macroblock top-left address.
 */
static void Predict_16x16_C(const NEW_GMC_DATA * const This, byte *dst, const byte *src, int dststride, int srcstride, int x, int y, int rounding) {

        const int W = This->sW;
        const int H = This->sH;
        const int rho = 3 - This->accuracy;
        const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;

        const int dUx = This->dU[0];
        const int dVx = This->dV[0];
        const int dUy = This->dU[1];
        const int dVy = This->dV[1];

        int Uo = This->Uo + 16*(dUy*y + dUx*x);
        int Vo = This->Vo + 16*(dVy*y + dVx*x);

        int i, j;

        dst += 16;
        for (j=16; j>0; --j) {
                int U = Uo, V = Vo;
                Uo += dUy;
                Vo += dVy;
                for (i=-16; i<0; ++i) {
                        unsigned int f0, f1, ri = 16, rj = 16;
                        int Offset;
                        int u = ( U >> 16 ) << rho;
                        int v = ( V >> 16 ) << rho;

                        U += dUx;
                        V += dVx;

                        if (u > 0 && u <= W) {
                                ri = MTab[u&15];
                                Offset = u>>4;
                        }
                        else if (u > W) Offset = W>>4;
                        else Offset = -1;

                        if (v > 0 && v <= H) {
                                rj = MTab[v&15];
                                Offset += (v>>4)*srcstride;
                        }
                        else if (v > H) Offset += (H>>4)*srcstride;
                        else Offset -= srcstride;

                        f0 = src[Offset + 0];
                        f0 |= src[Offset + 1] << 16;
                        f1 = src[Offset + srcstride + 0];
                        f1 |= src[Offset + srcstride + 1] << 16;
                        f0 = (ri*f0)>>16;
                        f1 = (ri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = (rj*f0 + Rounder) >> 24;

                        dst[i] = (byte)f0;
                }
                dst += dststride;
        }
}

//----------------------------

static void Predict_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,
                          byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding) {

        const int W  = This->sW >> 1;
        const int H  = This->sH >> 1;
        const int rho = 3-This->accuracy;
        const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

        const int dUx = This->dU[0];
        const int dVx = This->dV[0];
        const int dUy = This->dU[1];
        const int dVy = This->dV[1];

        int Uo = This->Uco + 8*(dUy*y + dUx*x);
        int Vo = This->Vco + 8*(dVy*y + dVx*x);

        int i, j;

        uDst += 8;
        vDst += 8;
        for (j=8; j>0; --j) {
                int U = Uo, V = Vo;
                Uo += dUy;
                Vo += dVy;

                for (i=-8; i<0; ++i) {
                        int Offset;
                        dword f0, f1, ri, rj;
                        int u, v;

                        u = ( U >> 16 ) << rho;
                        v = ( V >> 16 ) << rho;
                        U += dUx;
                        V += dVx;

                        if (u > 0 && u <= W) {
                                ri = MTab[u&15];
                                Offset = u>>4;
                        } else {
                                ri = 16;
                                if (u>W) Offset = W>>4;
                                else Offset = -1;
                        }

                        if (v > 0 && v <= H) {
                                rj = MTab[v&15];
                                Offset += (v>>4)*srcstride;
                        } else {
                                rj = 16;
                                if (v>H) Offset += (H>>4)*srcstride;
                                else Offset -= srcstride;
                        }

                        f0 = uSrc[Offset + 0];
                        f0 |= uSrc[Offset + 1] << 16;
                        f1 = uSrc[Offset + srcstride + 0];
                        f1 |= uSrc[Offset + srcstride + 1] << 16;
                        f0 = (ri*f0)>>16;
                        f1 = (ri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = (rj*f0 + Rounder) >> 24;

                        uDst[i] = (byte)f0;

                        f0 = vSrc[Offset + 0];
                        f0 |= vSrc[Offset + 1] << 16;
                        f1 = vSrc[Offset + srcstride + 0];
                        f1 |= vSrc[Offset + srcstride + 1] << 16;
                        f0 = (ri*f0)>>16;
                        f1 = (ri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = (rj*f0 + Rounder) >> 24;

                        vDst[i] = (byte)f0;
                }
                uDst += dststride;
                vDst += dststride;
        }
}

//----------------------------

static void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv, int x, int y, int qpel) {

        int i, j;
        int vx = 0, vy = 0;
        int uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);
        int vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);
        for (j=16; j>0; --j)
        {
                int U, V;
                U = uo;
                uo += Dsp->dU[1];
                V = vo;
                vo += Dsp->dV[1];
                for (i=16; i>0; --i)
                {
                        int u,v;
                        u = U >> 16;
                        U += Dsp->dU[0];
                        vx += u;
                        v = V >> 16;
                        V += Dsp->dV[0];
                        vy += v;
                }
        }
        vx -= (256*x+120) << (5+Dsp->accuracy);   /* 120 = 15*16/2 */
        vy -= (256*y+120) << (5+Dsp->accuracy);

        mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );
        mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );
}

//----------------------------
/* ************************************************************
 * simplified version for 1 warp point
 */
static void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This, byte *Dst, const byte *Src, int dststride, int srcstride, int x, int y, int rounding) {

        const int W  = This->sW;
        const int H  = This->sH;
        const int rho = 3-This->accuracy;
        const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;


        int uo = This->Uo + (x<<8);    /* ((16*x)<<4) */
        int vo = This->Vo + (y<<8);
        const dword ri = MTab[uo & 15];
        const dword rj = MTab[vo & 15];
        int i, j;

        int Offset;
        if ((dword)vo<=(dword)H) Offset  = (vo>>4)*srcstride;
        else if (vo>H)           Offset  = ( H>>4)*srcstride;
        else                     Offset  =-16*srcstride;
        if ((dword)uo<=(dword)W) Offset += (uo>>4);
        else if (uo>W)           Offset += ( W>>4);
        else                     Offset -= 16;

        Dst += 16;

        for(j=16; j>0; --j, Offset+=srcstride-16)
        {
                for(i=-16; i<0; ++i, ++Offset)
                {
                        dword f0, f1;
                        f0 = Src[ Offset     +0 ];
                        f0 |= Src[ Offset    +1 ] << 16;
                        f1 = Src[ Offset+srcstride +0 ];
                        f1 |= Src[ Offset+srcstride +1 ] << 16;
                        f0 = (ri*f0)>>16;
                        f1 = (ri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = ( rj*f0 + Rounder ) >> 24;
                        Dst[i] = (byte)f0;
                }
                Dst += dststride;
        }
}

//----------------------------

static void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This, byte *uDst, const byte *uSrc,
                              byte *vDst, const byte *vSrc, int dststride, int srcstride, int x, int y, int rounding) {

        const int W  = This->sW >> 1;
        const int H  = This->sH >> 1;
        const int rho = 3-This->accuracy;
        const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

        int uo = This->Uco + (x<<7);
        int vo = This->Vco + (y<<7);
        const dword rri = MTab[uo & 15];
        const dword rrj = MTab[vo & 15];
        int i, j;

        int Offset;
        if ((dword)vo<=(dword)H) Offset = (vo>>4)*srcstride;
        else if (vo>H) Offset = ( H>>4)*srcstride;
        else Offset =-8*srcstride;
        if ((dword)uo<=(dword)W) Offset += (uo>>4);
        else if (uo>W) Offset += (W>>4);
        else Offset -= 8;

        uDst += 8;
        vDst += 8;
        for(j=8; j>0; --j, Offset+=srcstride-8)
        {
                for(i=-8; i<0; ++i, Offset++)
                {
                        dword f0, f1;
                        f0 = uSrc[ Offset + 0 ];
                        f0 |= uSrc[ Offset + 1 ] << 16;
                        f1 = uSrc[ Offset + srcstride + 0 ];
                        f1 |= uSrc[ Offset + srcstride + 1 ] << 16;
                        f0 = (rri*f0)>>16;
                        f1 = (rri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = ( rrj*f0 + Rounder ) >> 24;
                        uDst[i] = (byte)f0;

                        f0 = vSrc[ Offset + 0 ];
                        f0 |= vSrc[ Offset + 1 ] << 16;
                        f1 = vSrc[ Offset + srcstride + 0 ];
                        f1 |= vSrc[ Offset + srcstride + 1 ] << 16;
                        f0 = (rri*f0)>>16;
                        f1 = (rri*f1) & 0x0fff0000;
                        f0 |= f1;
                        f0 = ( rrj*f0 + Rounder ) >> 24;
                        vDst[i] = (byte)f0;
                }
                uDst += dststride;
                vDst += dststride;
        }
}

//----------------------------

static void get_average_mv_1pt_C(const NEW_GMC_DATA *const Dsp, VECTOR * const mv, int x, int y, int qpel) {

        mv->x = RSHIFT(Dsp->Uo<<qpel, 3);
        mv->y = RSHIFT(Dsp->Vo<<qpel, 3);
}

//----------------------------

void generate_GMCparameters(int nb_pts, int accuracy, const WARPPOINTS *pts, int width, int height, NEW_GMC_DATA *gmc) {

        gmc->sW = width   << 4;
        gmc->sH = height << 4;
        gmc->accuracy = accuracy;
        gmc->num_wp = nb_pts;

        //reduce the number of points, if possible
        if(nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)) {
                if(nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) {
                        if(nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) {
                                nb_pts = 0;
                        } else
                                nb_pts = 1;
                } else
                        nb_pts = 2;
        } else
                nb_pts = 3;

        //now, nb_pts stores the actual number of points required for interpolation
        if(nb_pts<=1) {
                if(nb_pts==1) {
                        /* store as 4b fixed point */
                        gmc->Uo = pts->duv[0].x << accuracy;
                        gmc->Vo = pts->duv[0].y << accuracy;
                        gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy;   /* DIV2RND() */
                        gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy;   /* DIV2RND() */
                } else {  /* zero points?! */
                        gmc->Uo  = gmc->Vo   = 0;
                        gmc->Uco = gmc->Vco = 0;
                }

                gmc->predict_16x16   = Predict_1pt_16x16_C;
                gmc->predict_8x8  = Predict_1pt_8x8_C;
                gmc->get_average_mv = get_average_mv_1pt_C;
        } else {     /* 2 or 3 points */
                const int rho   = 3 - accuracy;  /* = {3,2,1,0} for Acc={0,1,2,3} */
                int Alpha = log2bin(width-1);
                int Ws = 1 << Alpha;

                gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width );   /* dU/dx */
                gmc->dV[0] =       RDIV( 8*Ws*pts->duv[1].y, width );  /* dV/dx */

                /*  disabled, because possibly buggy? */

#if 0
                if (nb_pts==2) {
                        gmc->dU[1] = -gmc->dV[0];  /* -Sin */
                        gmc->dV[1] =   gmc->dU[0] ;   /* Cos */
                }
                else
#endif
                {
                        const int Beta = log2bin(height-1);
                        const int Hs = 1<<Beta;
                        gmc->dU[1] =       RDIV( 8*Hs*pts->duv[2].x, height );    /* dU/dy */
                        gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height );  /* dV/dy */
                        if (Beta>Alpha) {
                                gmc->dU[0] <<= (Beta-Alpha);
                                gmc->dV[0] <<= (Beta-Alpha);
                                Alpha = Beta;
                                Ws = Hs;
                        }
                        else {
                                gmc->dU[1] <<= Alpha - Beta;
                                gmc->dV[1] <<= Alpha - Beta;
                        }
                }
                /* upscale to 16b fixed-point */
                gmc->dU[0] <<= (16-Alpha - rho);
                gmc->dU[1] <<= (16-Alpha - rho);
                gmc->dV[0] <<= (16-Alpha - rho);
                gmc->dV[1] <<= (16-Alpha - rho);

                gmc->Uo  = ( pts->duv[0].x  <<(16+ accuracy)) + (1<<15);
                gmc->Vo  = ( pts->duv[0].y  <<(16+ accuracy)) + (1<<15);
                gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);
                gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);
                gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;
                gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;

                gmc->predict_16x16   = Predict_16x16_C;
                gmc->predict_8x8  = Predict_8x8_C;
                gmc->get_average_mv = get_average_mv_C;
        }
}


/* [<][>][^][v][top][bottom][index][help] */