/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- trie_node_link
- trie_node_alloc
- filter_cleanup
- get_filter_handle
- AP_DECLARE
- AP_DECLARE
- register_filter
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- add_any_filter_handle
- add_any_filter
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- remove_any_filter
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE
- AP_DECLARE_NONSTD
- AP_DECLARE
- AP_DECLARE_NONSTD
- AP_DECLARE_NONSTD
- AP_DECLARE
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define APR_WANT_STRFUNC
#include "apr_want.h"
#include "apr_lib.h"
#include "apr_hash.h"
#include "apr_strings.h"
#include "httpd.h"
#include "http_log.h"
#include "util_filter.h"
/* NOTE: Apache's current design doesn't allow a pool to be passed thru,
so we depend on a global to hold the correct pool
*/
#define FILTER_POOL apr_hook_global_pool
#include "apr_hooks.h" /* for apr_hook_global_pool */
/*
** This macro returns true/false if a given filter should be inserted BEFORE
** another filter. This will happen when one of: 1) there isn't another
** filter; 2) that filter has a higher filter type (class); 3) that filter
** corresponds to a different request.
*/
#define INSERT_BEFORE(f, before_this) ((before_this) == NULL \
|| (before_this)->frec->ftype > (f)->frec->ftype \
|| (before_this)->r != (f)->r)
/* Trie structure to hold the mapping from registered
* filter names to filters
*/
typedef struct filter_trie_node filter_trie_node;
typedef struct {
int c;
filter_trie_node *child;
} filter_trie_child_ptr;
/* Each trie node has an array of pointers to its children.
* The array is kept in sorted order so that add_any_filter()
* can do a binary search
*/
struct filter_trie_node {
ap_filter_rec_t *frec;
filter_trie_child_ptr *children;
int nchildren;
int size;
};
#define TRIE_INITIAL_SIZE 4
/* Link a trie node to its parent
*/
static void trie_node_link(apr_pool_t *p, filter_trie_node *parent,
filter_trie_node *child, int c)
{
int i, j;
if (parent->nchildren == parent->size) {
filter_trie_child_ptr *new;
parent->size *= 2;
new = (filter_trie_child_ptr *)apr_palloc(p, parent->size *
sizeof(filter_trie_child_ptr));
memcpy(new, parent->children, parent->nchildren *
sizeof(filter_trie_child_ptr));
parent->children = new;
}
for (i = 0; i < parent->nchildren; i++) {
if (c == parent->children[i].c) {
return;
}
else if (c < parent->children[i].c) {
break;
}
}
for (j = parent->nchildren; j > i; j--) {
parent->children[j].c = parent->children[j - 1].c;
parent->children[j].child = parent->children[j - 1].child;
}
parent->children[i].c = c;
parent->children[i].child = child;
parent->nchildren++;
}
/* Allocate a new node for a trie.
* If parent is non-NULL, link the new node under the parent node with
* key 'c' (or, if an existing child node matches, return that one)
*/
static filter_trie_node *trie_node_alloc(apr_pool_t *p,
filter_trie_node *parent, char c)
{
filter_trie_node *new_node;
if (parent) {
int i;
for (i = 0; i < parent->nchildren; i++) {
if (c == parent->children[i].c) {
return parent->children[i].child;
}
else if (c < parent->children[i].c) {
break;
}
}
new_node =
(filter_trie_node *)apr_palloc(p, sizeof(filter_trie_node));
trie_node_link(p, parent, new_node, c);
}
else { /* No parent node */
new_node = (filter_trie_node *)apr_palloc(p,
sizeof(filter_trie_node));
}
new_node->frec = NULL;
new_node->nchildren = 0;
new_node->size = TRIE_INITIAL_SIZE;
new_node->children = (filter_trie_child_ptr *)apr_palloc(p,
new_node->size * sizeof(filter_trie_child_ptr));
return new_node;
}
static filter_trie_node *registered_output_filters = NULL;
static filter_trie_node *registered_input_filters = NULL;
static apr_status_t filter_cleanup(void *ctx)
{
registered_output_filters = NULL;
registered_input_filters = NULL;
return APR_SUCCESS;
}
static ap_filter_rec_t *get_filter_handle(const char *name,
const filter_trie_node *filter_set)
{
if (filter_set) {
const char *n;
const filter_trie_node *node;
node = filter_set;
for (n = name; *n; n++) {
int start, end;
start = 0;
end = node->nchildren - 1;
while (end >= start) {
int middle = (end + start) / 2;
char ch = node->children[middle].c;
if (*n == ch) {
node = node->children[middle].child;
break;
}
else if (*n < ch) {
end = middle - 1;
}
else {
start = middle + 1;
}
}
if (end < start) {
node = NULL;
break;
}
}
if (node && node->frec) {
return node->frec;
}
}
return NULL;
}
AP_DECLARE(ap_filter_rec_t *)ap_get_output_filter_handle(const char *name)
{
return get_filter_handle(name, registered_output_filters);
}
AP_DECLARE(ap_filter_rec_t *)ap_get_input_filter_handle(const char *name)
{
return get_filter_handle(name, registered_input_filters);
}
static ap_filter_rec_t *register_filter(const char *name,
ap_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype,
filter_trie_node **reg_filter_set)
{
ap_filter_rec_t *frec;
char *normalized_name;
const char *n;
filter_trie_node *node;
if (!*reg_filter_set) {
*reg_filter_set = trie_node_alloc(FILTER_POOL, NULL, 0);
}
normalized_name = apr_pstrdup(FILTER_POOL, name);
ap_str_tolower(normalized_name);
node = *reg_filter_set;
for (n = normalized_name; *n; n++) {
filter_trie_node *child = trie_node_alloc(FILTER_POOL, node, *n);
if (apr_isalpha(*n)) {
trie_node_link(FILTER_POOL, node, child, apr_toupper(*n));
}
node = child;
}
if (node->frec) {
frec = node->frec;
}
else {
frec = apr_pcalloc(FILTER_POOL, sizeof(*frec));
node->frec = frec;
frec->name = normalized_name;
}
frec->filter_func = filter_func;
frec->filter_init_func = filter_init;
frec->ftype = ftype;
apr_pool_cleanup_register(FILTER_POOL, NULL, filter_cleanup,
apr_pool_cleanup_null);
return frec;
}
AP_DECLARE(ap_filter_rec_t *) ap_register_input_filter(const char *name,
ap_in_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype)
{
ap_filter_func f;
f.in_func = filter_func;
return register_filter(name, f, filter_init, ftype,
®istered_input_filters);
}
/* Prepare to make this a #define in 2.2 */
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter(const char *name,
ap_out_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype)
{
return ap_register_output_filter_protocol(name, filter_func,
filter_init, ftype, 0) ;
}
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter_protocol(
const char *name,
ap_out_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype,
unsigned int proto_flags)
{
ap_filter_rec_t* ret ;
ap_filter_func f;
f.out_func = filter_func;
ret = register_filter(name, f, filter_init, ftype,
®istered_output_filters);
ret->proto_flags = proto_flags ;
return ret ;
}
static ap_filter_t *add_any_filter_handle(ap_filter_rec_t *frec, void *ctx,
request_rec *r, conn_rec *c,
ap_filter_t **r_filters,
ap_filter_t **p_filters,
ap_filter_t **c_filters)
{
apr_pool_t* p = r ? r->pool : c->pool;
ap_filter_t *f = apr_palloc(p, sizeof(*f));
ap_filter_t **outf;
if (frec->ftype < AP_FTYPE_PROTOCOL) {
if (r) {
outf = r_filters;
}
else {
ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL,
"a content filter was added without a request: %s", frec->name);
return NULL;
}
}
else if (frec->ftype < AP_FTYPE_CONNECTION) {
if (r) {
outf = p_filters;
}
else {
ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL,
"a protocol filter was added without a request: %s", frec->name);
return NULL;
}
}
else {
outf = c_filters;
}
f->frec = frec;
f->ctx = ctx;
f->r = r;
f->c = c;
f->next = NULL;
if (INSERT_BEFORE(f, *outf)) {
f->next = *outf;
if (*outf) {
ap_filter_t *first = NULL;
if (r) {
/* If we are adding our first non-connection filter,
* Then don't try to find the right location, it is
* automatically first.
*/
if (*r_filters != *c_filters) {
first = *r_filters;
while (first && (first->next != (*outf))) {
first = first->next;
}
}
}
if (first && first != (*outf)) {
first->next = f;
}
}
*outf = f;
}
else {
ap_filter_t *fscan = *outf;
while (!INSERT_BEFORE(f, fscan->next))
fscan = fscan->next;
f->next = fscan->next;
fscan->next = f;
}
if (frec->ftype < AP_FTYPE_CONNECTION && (*r_filters == *c_filters)) {
*r_filters = *p_filters;
}
return f;
}
static ap_filter_t *add_any_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c,
const filter_trie_node *reg_filter_set,
ap_filter_t **r_filters,
ap_filter_t **p_filters,
ap_filter_t **c_filters)
{
if (reg_filter_set) {
const char *n;
const filter_trie_node *node;
node = reg_filter_set;
for (n = name; *n; n++) {
int start, end;
start = 0;
end = node->nchildren - 1;
while (end >= start) {
int middle = (end + start) / 2;
char ch = node->children[middle].c;
if (*n == ch) {
node = node->children[middle].child;
break;
}
else if (*n < ch) {
end = middle - 1;
}
else {
start = middle + 1;
}
}
if (end < start) {
node = NULL;
break;
}
}
if (node && node->frec) {
return add_any_filter_handle(node->frec, ctx, r, c, r_filters,
p_filters, c_filters);
}
}
ap_log_error(APLOG_MARK, APLOG_ERR, 0, NULL,
"an unknown filter was not added: %s", name);
return NULL;
}
AP_DECLARE(ap_filter_t *) ap_add_input_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c)
{
return add_any_filter(name, ctx, r, c, registered_input_filters,
r ? &r->input_filters : NULL,
r ? &r->proto_input_filters : NULL, &c->input_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_input_filter_handle(ap_filter_rec_t *f,
void *ctx,
request_rec *r,
conn_rec *c)
{
return add_any_filter_handle(f, ctx, r, c, r ? &r->input_filters : NULL,
r ? &r->proto_input_filters : NULL,
&c->input_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_output_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c)
{
return add_any_filter(name, ctx, r, c, registered_output_filters,
r ? &r->output_filters : NULL,
r ? &r->proto_output_filters : NULL, &c->output_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_output_filter_handle(ap_filter_rec_t *f,
void *ctx,
request_rec *r,
conn_rec *c)
{
return add_any_filter_handle(f, ctx, r, c, r ? &r->output_filters : NULL,
r ? &r->proto_output_filters : NULL,
&c->output_filters);
}
static void remove_any_filter(ap_filter_t *f, ap_filter_t **r_filt, ap_filter_t **p_filt,
ap_filter_t **c_filt)
{
ap_filter_t **curr = r_filt ? r_filt : c_filt;
ap_filter_t *fscan = *curr;
if (p_filt && *p_filt == f)
*p_filt = (*p_filt)->next;
if (*curr == f) {
*curr = (*curr)->next;
return;
}
while (fscan->next != f) {
if (!(fscan = fscan->next)) {
return;
}
}
fscan->next = f->next;
}
AP_DECLARE(void) ap_remove_input_filter(ap_filter_t *f)
{
remove_any_filter(f, f->r ? &f->r->input_filters : NULL,
f->r ? &f->r->proto_input_filters : NULL,
&f->c->input_filters);
}
AP_DECLARE(void) ap_remove_output_filter(ap_filter_t *f)
{
remove_any_filter(f, f->r ? &f->r->output_filters : NULL,
f->r ? &f->r->proto_output_filters : NULL,
&f->c->output_filters);
}
/*
* Read data from the next filter in the filter stack. Data should be
* modified in the bucket brigade that is passed in. The core allocates the
* bucket brigade, modules that wish to replace large chunks of data or to
* save data off to the side should probably create their own temporary
* brigade especially for that use.
*/
AP_DECLARE(apr_status_t) ap_get_brigade(ap_filter_t *next,
apr_bucket_brigade *bb,
ap_input_mode_t mode,
apr_read_type_e block,
apr_off_t readbytes)
{
if (next) {
return next->frec->filter_func.in_func(next, bb, mode, block,
readbytes);
}
return AP_NOBODY_READ;
}
/* Pass the buckets to the next filter in the filter stack. If the
* current filter is a handler, we should get NULL passed in instead of
* the current filter. At that point, we can just call the first filter in
* the stack, or r->output_filters.
*/
AP_DECLARE(apr_status_t) ap_pass_brigade(ap_filter_t *next,
apr_bucket_brigade *bb)
{
if (next) {
apr_bucket *e;
if ((e = APR_BRIGADE_LAST(bb)) && APR_BUCKET_IS_EOS(e) && next->r) {
/* This is only safe because HTTP_HEADER filter is always in
* the filter stack. This ensures that there is ALWAYS a
* request-based filter that we can attach this to. If the
* HTTP_FILTER is removed, and another filter is not put in its
* place, then handlers like mod_cgi, which attach their own
* EOS bucket to the brigade will be broken, because we will
* get two EOS buckets on the same request.
*/
next->r->eos_sent = 1;
/* remember the eos for internal redirects, too */
if (next->r->prev) {
request_rec *prev = next->r->prev;
while (prev) {
prev->eos_sent = 1;
prev = prev->prev;
}
}
}
return next->frec->filter_func.out_func(next, bb);
}
return AP_NOBODY_WROTE;
}
AP_DECLARE(apr_status_t) ap_save_brigade(ap_filter_t *f,
apr_bucket_brigade **saveto,
apr_bucket_brigade **b, apr_pool_t *p)
{
apr_bucket *e;
apr_status_t rv, srv = APR_SUCCESS;
/* If have never stored any data in the filter, then we had better
* create an empty bucket brigade so that we can concat.
*/
if (!(*saveto)) {
*saveto = apr_brigade_create(p, f->c->bucket_alloc);
}
for (e = APR_BRIGADE_FIRST(*b);
e != APR_BRIGADE_SENTINEL(*b);
e = APR_BUCKET_NEXT(e))
{
rv = apr_bucket_setaside(e, p);
/* If the bucket type does not implement setaside, then
* (hopefully) morph it into a bucket type which does, and set
* *that* aside... */
if (rv == APR_ENOTIMPL) {
const char *s;
apr_size_t n;
rv = apr_bucket_read(e, &s, &n, APR_BLOCK_READ);
if (rv == APR_SUCCESS) {
rv = apr_bucket_setaside(e, p);
}
}
if (rv != APR_SUCCESS) {
srv = rv;
/* Return an error but still save the brigade if
* ->setaside() is really not implemented. */
if (rv != APR_ENOTIMPL) {
return rv;
}
}
}
APR_BRIGADE_CONCAT(*saveto, *b);
return srv;
}
AP_DECLARE_NONSTD(apr_status_t) ap_filter_flush(apr_bucket_brigade *bb,
void *ctx)
{
ap_filter_t *f = ctx;
return ap_pass_brigade(f, bb);
}
AP_DECLARE(apr_status_t) ap_fflush(ap_filter_t *f, apr_bucket_brigade *bb)
{
apr_bucket *b;
b = apr_bucket_flush_create(f->c->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(bb, b);
return ap_pass_brigade(f, bb);
}
AP_DECLARE_NONSTD(apr_status_t) ap_fputstrs(ap_filter_t *f,
apr_bucket_brigade *bb, ...)
{
va_list args;
apr_status_t rv;
va_start(args, bb);
rv = apr_brigade_vputstrs(bb, ap_filter_flush, f, args);
va_end(args);
return rv;
}
AP_DECLARE_NONSTD(apr_status_t) ap_fprintf(ap_filter_t *f,
apr_bucket_brigade *bb,
const char *fmt,
...)
{
va_list args;
apr_status_t rv;
va_start(args, fmt);
rv = apr_brigade_vprintf(bb, ap_filter_flush, f, fmt, args);
va_end(args);
return rv;
}
AP_DECLARE(void) ap_filter_protocol(ap_filter_t *f, unsigned int flags)
{
f->frec->proto_flags = flags ;
}