/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- apr_cvt
- apr_ecvt
- apr_fcvt
- apr_gcvt
- conv_10
- conv_10_quad
- conv_in_addr
- conv_apr_sockaddr
- conv_os_thread_t
- conv_fp
- conv_p2
- conv_p2_quad
- conv_os_thread_t_hex
- APR_DECLARE
- snprintf_flush
- APR_DECLARE_NONSTD
- APR_DECLARE
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_private.h"
#include "apr_lib.h"
#include "apr_strings.h"
#include "apr_network_io.h"
#include "apr_portable.h"
#include "apr_errno.h"
#include <math.h>
#if APR_HAVE_CTYPE_H
#include <ctype.h>
#endif
#if APR_HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#if APR_HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#if APR_HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#if APR_HAVE_LIMITS_H
#include <limits.h>
#endif
#if APR_HAVE_STRING_H
#include <string.h>
#endif
typedef enum {
NO = 0, YES = 1
} boolean_e;
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define NUL '\0'
static const char null_string[] = "(null)";
#define S_NULL ((char *)null_string)
#define S_NULL_LEN 6
#define FLOAT_DIGITS 6
#define EXPONENT_LENGTH 10
/*
* NUM_BUF_SIZE is the size of the buffer used for arithmetic conversions
*
* NOTICE: this is a magic number; do not decrease it
*/
#define NUM_BUF_SIZE 512
/*
* cvt - IEEE floating point formatting routines.
* Derived from UNIX V7, Copyright(C) Caldera International Inc.
*/
/*
* apr_ecvt converts to decimal
* the number of digits is specified by ndigit
* decpt is set to the position of the decimal point
* sign is set to 0 for positive, 1 for negative
*/
#define NDIG 80
/* buf must have at least NDIG bytes */
static char *apr_cvt(double arg, int ndigits, int *decpt, int *sign,
int eflag, char *buf)
{
register int r2;
double fi, fj;
register char *p, *p1;
if (ndigits >= NDIG - 1)
ndigits = NDIG - 2;
r2 = 0;
*sign = 0;
p = &buf[0];
if (arg < 0) {
*sign = 1;
arg = -arg;
}
arg = modf(arg, &fi);
p1 = &buf[NDIG];
/*
* Do integer part
*/
if (fi != 0) {
p1 = &buf[NDIG];
while (p1 > &buf[0] && fi != 0) {
fj = modf(fi / 10, &fi);
*--p1 = (int) ((fj + .03) * 10) + '0';
r2++;
}
while (p1 < &buf[NDIG])
*p++ = *p1++;
}
else if (arg > 0) {
while ((fj = arg * 10) < 1) {
arg = fj;
r2--;
}
}
p1 = &buf[ndigits];
if (eflag == 0)
p1 += r2;
if (p1 < &buf[0]) {
*decpt = -ndigits;
buf[0] = '\0';
return (buf);
}
*decpt = r2;
while (p <= p1 && p < &buf[NDIG]) {
arg *= 10;
arg = modf(arg, &fj);
*p++ = (int) fj + '0';
}
if (p1 >= &buf[NDIG]) {
buf[NDIG - 1] = '\0';
return (buf);
}
p = p1;
*p1 += 5;
while (*p1 > '9') {
*p1 = '0';
if (p1 > buf)
++ * --p1;
else {
*p1 = '1';
(*decpt)++;
if (eflag == 0) {
if (p > buf)
*p = '0';
p++;
}
}
}
*p = '\0';
return (buf);
}
static char *apr_ecvt(double arg, int ndigits, int *decpt, int *sign, char *buf)
{
return (apr_cvt(arg, ndigits, decpt, sign, 1, buf));
}
static char *apr_fcvt(double arg, int ndigits, int *decpt, int *sign, char *buf)
{
return (apr_cvt(arg, ndigits, decpt, sign, 0, buf));
}
/*
* apr_gcvt - Floating output conversion to
* minimal length string
*/
static char *apr_gcvt(double number, int ndigit, char *buf, boolean_e altform)
{
int sign, decpt;
register char *p1, *p2;
register int i;
char buf1[NDIG];
p1 = apr_ecvt(number, ndigit, &decpt, &sign, buf1);
p2 = buf;
if (sign)
*p2++ = '-';
for (i = ndigit - 1; i > 0 && p1[i] == '0'; i--)
ndigit--;
if ((decpt >= 0 && decpt - ndigit > 4)
|| (decpt < 0 && decpt < -3)) { /* use E-style */
decpt--;
*p2++ = *p1++;
*p2++ = '.';
for (i = 1; i < ndigit; i++)
*p2++ = *p1++;
*p2++ = 'e';
if (decpt < 0) {
decpt = -decpt;
*p2++ = '-';
}
else
*p2++ = '+';
if (decpt / 100 > 0)
*p2++ = decpt / 100 + '0';
if (decpt / 10 > 0)
*p2++ = (decpt % 100) / 10 + '0';
*p2++ = decpt % 10 + '0';
}
else {
if (decpt <= 0) {
if (*p1 != '0')
*p2++ = '.';
while (decpt < 0) {
decpt++;
*p2++ = '0';
}
}
for (i = 1; i <= ndigit; i++) {
*p2++ = *p1++;
if (i == decpt)
*p2++ = '.';
}
if (ndigit < decpt) {
while (ndigit++ < decpt)
*p2++ = '0';
*p2++ = '.';
}
}
if (p2[-1] == '.' && !altform)
p2--;
*p2 = '\0';
return (buf);
}
/*
* The INS_CHAR macro inserts a character in the buffer and writes
* the buffer back to disk if necessary
* It uses the char pointers sp and bep:
* sp points to the next available character in the buffer
* bep points to the end-of-buffer+1
* While using this macro, note that the nextb pointer is NOT updated.
*
* NOTE: Evaluation of the c argument should not have any side-effects
*/
#define INS_CHAR(c, sp, bep, cc) \
{ \
if (sp) { \
if (sp >= bep) { \
vbuff->curpos = sp; \
if (flush_func(vbuff)) \
return -1; \
sp = vbuff->curpos; \
bep = vbuff->endpos; \
} \
*sp++ = (c); \
} \
cc++; \
}
#define NUM(c) (c - '0')
#define STR_TO_DEC(str, num) \
num = NUM(*str++); \
while (apr_isdigit(*str)) \
{ \
num *= 10 ; \
num += NUM(*str++); \
}
/*
* This macro does zero padding so that the precision
* requirement is satisfied. The padding is done by
* adding '0's to the left of the string that is going
* to be printed. We don't allow precision to be large
* enough that we continue past the start of s.
*
* NOTE: this makes use of the magic info that s is
* always based on num_buf with a size of NUM_BUF_SIZE.
*/
#define FIX_PRECISION(adjust, precision, s, s_len) \
if (adjust) { \
apr_size_t p = (precision + 1 < NUM_BUF_SIZE) \
? precision : NUM_BUF_SIZE - 1; \
while (s_len < p) \
{ \
*--s = '0'; \
s_len++; \
} \
}
/*
* Macro that does padding. The padding is done by printing
* the character ch.
*/
#define PAD(width, len, ch) \
do \
{ \
INS_CHAR(ch, sp, bep, cc); \
width--; \
} \
while (width > len)
/*
* Prefix the character ch to the string str
* Increase length
* Set the has_prefix flag
*/
#define PREFIX(str, length, ch) \
*--str = ch; \
length++; \
has_prefix=YES;
/*
* Convert num to its decimal format.
* Return value:
* - a pointer to a string containing the number (no sign)
* - len contains the length of the string
* - is_negative is set to TRUE or FALSE depending on the sign
* of the number (always set to FALSE if is_unsigned is TRUE)
*
* The caller provides a buffer for the string: that is the buf_end argument
* which is a pointer to the END of the buffer + 1 (i.e. if the buffer
* is declared as buf[ 100 ], buf_end should be &buf[ 100 ])
*
* Note: we have 2 versions. One is used when we need to use quads
* (conv_10_quad), the other when we don't (conv_10). We're assuming the
* latter is faster.
*/
static char *conv_10(register apr_int32_t num, register int is_unsigned,
register int *is_negative, char *buf_end,
register apr_size_t *len)
{
register char *p = buf_end;
register apr_uint32_t magnitude = num;
if (is_unsigned) {
*is_negative = FALSE;
}
else {
*is_negative = (num < 0);
/*
* On a 2's complement machine, negating the most negative integer
* results in a number that cannot be represented as a signed integer.
* Here is what we do to obtain the number's magnitude:
* a. add 1 to the number
* b. negate it (becomes positive)
* c. convert it to unsigned
* d. add 1
*/
if (*is_negative) {
apr_int32_t t = num + 1;
magnitude = ((apr_uint32_t) -t) + 1;
}
}
/*
* We use a do-while loop so that we write at least 1 digit
*/
do {
register apr_uint32_t new_magnitude = magnitude / 10;
*--p = (char) (magnitude - new_magnitude * 10 + '0');
magnitude = new_magnitude;
}
while (magnitude);
*len = buf_end - p;
return (p);
}
static char *conv_10_quad(apr_int64_t num, register int is_unsigned,
register int *is_negative, char *buf_end,
register apr_size_t *len)
{
register char *p = buf_end;
apr_uint64_t magnitude = num;
/*
* We see if we can use the faster non-quad version by checking the
* number against the largest long value it can be. If <=, we
* punt to the quicker version.
*/
if ((magnitude <= APR_UINT32_MAX && is_unsigned)
|| (num <= APR_INT32_MAX && num >= APR_INT32_MIN && !is_unsigned))
return(conv_10((apr_int32_t)num, is_unsigned, is_negative, buf_end, len));
if (is_unsigned) {
*is_negative = FALSE;
}
else {
*is_negative = (num < 0);
/*
* On a 2's complement machine, negating the most negative integer
* results in a number that cannot be represented as a signed integer.
* Here is what we do to obtain the number's magnitude:
* a. add 1 to the number
* b. negate it (becomes positive)
* c. convert it to unsigned
* d. add 1
*/
if (*is_negative) {
apr_int64_t t = num + 1;
magnitude = ((apr_uint64_t) -t) + 1;
}
}
/*
* We use a do-while loop so that we write at least 1 digit
*/
do {
apr_uint64_t new_magnitude = magnitude / 10;
*--p = (char) (magnitude - new_magnitude * 10 + '0');
magnitude = new_magnitude;
}
while (magnitude);
*len = buf_end - p;
return (p);
}
static char *conv_in_addr(struct in_addr *ia, char *buf_end, apr_size_t *len)
{
unsigned addr = ntohl(ia->s_addr);
char *p = buf_end;
int is_negative;
apr_size_t sub_len;
p = conv_10((addr & 0x000000FF) , TRUE, &is_negative, p, &sub_len);
*--p = '.';
p = conv_10((addr & 0x0000FF00) >> 8, TRUE, &is_negative, p, &sub_len);
*--p = '.';
p = conv_10((addr & 0x00FF0000) >> 16, TRUE, &is_negative, p, &sub_len);
*--p = '.';
p = conv_10((addr & 0xFF000000) >> 24, TRUE, &is_negative, p, &sub_len);
*len = buf_end - p;
return (p);
}
/* Must be passed a buffer of size NUM_BUF_SIZE where buf_end points
* to 1 byte past the end of the buffer. */
static char *conv_apr_sockaddr(apr_sockaddr_t *sa, char *buf_end, apr_size_t *len)
{
char *p = buf_end;
int is_negative;
apr_size_t sub_len;
char *ipaddr_str;
p = conv_10(sa->port, TRUE, &is_negative, p, &sub_len);
*--p = ':';
ipaddr_str = buf_end - NUM_BUF_SIZE;
if (apr_sockaddr_ip_getbuf(ipaddr_str, sa->addr_str_len, sa)) {
/* Should only fail if the buffer is too small, which it
* should not be; but fail safe anyway: */
*--p = '?';
*len = buf_end - p;
return p;
}
sub_len = strlen(ipaddr_str);
#if APR_HAVE_IPV6
if (sa->family == APR_INET6 &&
!IN6_IS_ADDR_V4MAPPED(&sa->sa.sin6.sin6_addr)) {
*(p - 1) = ']';
p -= sub_len + 2;
*p = '[';
memcpy(p + 1, ipaddr_str, sub_len);
}
else
#endif
{
p -= sub_len;
memcpy(p, ipaddr_str, sub_len);
}
*len = buf_end - p;
return (p);
}
#if APR_HAS_THREADS
static char *conv_os_thread_t(apr_os_thread_t *tid, char *buf_end, apr_size_t *len)
{
union {
apr_os_thread_t tid;
apr_uint64_t u64;
apr_uint32_t u32;
} u;
int is_negative;
u.tid = *tid;
switch(sizeof(u.tid)) {
case sizeof(apr_int32_t):
return conv_10(u.u32, TRUE, &is_negative, buf_end, len);
case sizeof(apr_int64_t):
return conv_10_quad(u.u64, TRUE, &is_negative, buf_end, len);
default:
/* not implemented; stick 0 in the buffer */
return conv_10(0, TRUE, &is_negative, buf_end, len);
}
}
#endif
/*
* Convert a floating point number to a string formats 'f', 'e' or 'E'.
* The result is placed in buf, and len denotes the length of the string
* The sign is returned in the is_negative argument (and is not placed
* in buf).
*/
static char *conv_fp(register char format, register double num,
boolean_e add_dp, int precision, int *is_negative,
char *buf, apr_size_t *len)
{
register char *s = buf;
register char *p;
int decimal_point;
char buf1[NDIG];
if (format == 'f')
p = apr_fcvt(num, precision, &decimal_point, is_negative, buf1);
else /* either e or E format */
p = apr_ecvt(num, precision + 1, &decimal_point, is_negative, buf1);
/*
* Check for Infinity and NaN
*/
if (apr_isalpha(*p)) {
*len = strlen(p);
memcpy(buf, p, *len + 1);
*is_negative = FALSE;
return (buf);
}
if (format == 'f') {
if (decimal_point <= 0) {
*s++ = '0';
if (precision > 0) {
*s++ = '.';
while (decimal_point++ < 0)
*s++ = '0';
}
else if (add_dp)
*s++ = '.';
}
else {
while (decimal_point-- > 0)
*s++ = *p++;
if (precision > 0 || add_dp)
*s++ = '.';
}
}
else {
*s++ = *p++;
if (precision > 0 || add_dp)
*s++ = '.';
}
/*
* copy the rest of p, the NUL is NOT copied
*/
while (*p)
*s++ = *p++;
if (format != 'f') {
char temp[EXPONENT_LENGTH]; /* for exponent conversion */
apr_size_t t_len;
int exponent_is_negative;
*s++ = format; /* either e or E */
decimal_point--;
if (decimal_point != 0) {
p = conv_10((apr_int32_t) decimal_point, FALSE, &exponent_is_negative,
&temp[EXPONENT_LENGTH], &t_len);
*s++ = exponent_is_negative ? '-' : '+';
/*
* Make sure the exponent has at least 2 digits
*/
if (t_len == 1)
*s++ = '0';
while (t_len--)
*s++ = *p++;
}
else {
*s++ = '+';
*s++ = '0';
*s++ = '0';
}
}
*len = s - buf;
return (buf);
}
/*
* Convert num to a base X number where X is a power of 2. nbits determines X.
* For example, if nbits is 3, we do base 8 conversion
* Return value:
* a pointer to a string containing the number
*
* The caller provides a buffer for the string: that is the buf_end argument
* which is a pointer to the END of the buffer + 1 (i.e. if the buffer
* is declared as buf[ 100 ], buf_end should be &buf[ 100 ])
*
* As with conv_10, we have a faster version which is used when
* the number isn't quad size.
*/
static char *conv_p2(register apr_uint32_t num, register int nbits,
char format, char *buf_end, register apr_size_t *len)
{
register int mask = (1 << nbits) - 1;
register char *p = buf_end;
static const char low_digits[] = "0123456789abcdef";
static const char upper_digits[] = "0123456789ABCDEF";
register const char *digits = (format == 'X') ? upper_digits : low_digits;
do {
*--p = digits[num & mask];
num >>= nbits;
}
while (num);
*len = buf_end - p;
return (p);
}
static char *conv_p2_quad(apr_uint64_t num, register int nbits,
char format, char *buf_end, register apr_size_t *len)
{
register int mask = (1 << nbits) - 1;
register char *p = buf_end;
static const char low_digits[] = "0123456789abcdef";
static const char upper_digits[] = "0123456789ABCDEF";
register const char *digits = (format == 'X') ? upper_digits : low_digits;
if (num <= APR_UINT32_MAX)
return(conv_p2((apr_uint32_t)num, nbits, format, buf_end, len));
do {
*--p = digits[num & mask];
num >>= nbits;
}
while (num);
*len = buf_end - p;
return (p);
}
#if APR_HAS_THREADS
static char *conv_os_thread_t_hex(apr_os_thread_t *tid, char *buf_end, apr_size_t *len)
{
union {
apr_os_thread_t tid;
apr_uint64_t u64;
apr_uint32_t u32;
} u;
int is_negative;
u.tid = *tid;
switch(sizeof(u.tid)) {
case sizeof(apr_int32_t):
return conv_p2(u.u32, 4, 'x', buf_end, len);
case sizeof(apr_int64_t):
return conv_p2_quad(u.u64, 4, 'x', buf_end, len);
default:
/* not implemented; stick 0 in the buffer */
return conv_10(0, TRUE, &is_negative, buf_end, len);
}
}
#endif
/*
* Do format conversion placing the output in buffer
*/
APR_DECLARE(int) apr_vformatter(int (*flush_func)(apr_vformatter_buff_t *),
apr_vformatter_buff_t *vbuff, const char *fmt, va_list ap)
{
register char *sp;
register char *bep;
register int cc = 0;
register apr_size_t i;
register char *s = NULL;
char *q;
apr_size_t s_len = 0;
register apr_size_t min_width = 0;
apr_size_t precision = 0;
enum {
LEFT, RIGHT
} adjust;
char pad_char;
char prefix_char;
double fp_num;
apr_int64_t i_quad = 0;
apr_uint64_t ui_quad;
apr_int32_t i_num = 0;
apr_uint32_t ui_num;
char num_buf[NUM_BUF_SIZE];
char char_buf[2]; /* for printing %% and %<unknown> */
enum var_type_enum {
IS_QUAD, IS_LONG, IS_SHORT, IS_INT
};
enum var_type_enum var_type = IS_INT;
/*
* Flag variables
*/
boolean_e alternate_form;
boolean_e print_sign;
boolean_e print_blank;
boolean_e adjust_precision;
boolean_e adjust_width;
int is_negative;
sp = vbuff->curpos;
bep = vbuff->endpos;
while (*fmt) {
if (*fmt != '%') {
INS_CHAR(*fmt, sp, bep, cc);
}
else {
/*
* Default variable settings
*/
boolean_e print_something = YES;
adjust = RIGHT;
alternate_form = print_sign = print_blank = NO;
pad_char = ' ';
prefix_char = NUL;
fmt++;
/*
* Try to avoid checking for flags, width or precision
*/
if (!apr_islower(*fmt)) {
/*
* Recognize flags: -, #, BLANK, +
*/
for (;; fmt++) {
if (*fmt == '-')
adjust = LEFT;
else if (*fmt == '+')
print_sign = YES;
else if (*fmt == '#')
alternate_form = YES;
else if (*fmt == ' ')
print_blank = YES;
else if (*fmt == '0')
pad_char = '0';
else
break;
}
/*
* Check if a width was specified
*/
if (apr_isdigit(*fmt)) {
STR_TO_DEC(fmt, min_width);
adjust_width = YES;
}
else if (*fmt == '*') {
int v = va_arg(ap, int);
fmt++;
adjust_width = YES;
if (v < 0) {
adjust = LEFT;
min_width = (apr_size_t)(-v);
}
else
min_width = (apr_size_t)v;
}
else
adjust_width = NO;
/*
* Check if a precision was specified
*/
if (*fmt == '.') {
adjust_precision = YES;
fmt++;
if (apr_isdigit(*fmt)) {
STR_TO_DEC(fmt, precision);
}
else if (*fmt == '*') {
int v = va_arg(ap, int);
fmt++;
precision = (v < 0) ? 0 : (apr_size_t)v;
}
else
precision = 0;
}
else
adjust_precision = NO;
}
else
adjust_precision = adjust_width = NO;
/*
* Modifier check. Note that if APR_INT64_T_FMT is "d",
* the first if condition is never true.
*/
if ((sizeof(APR_INT64_T_FMT) == 4 &&
fmt[0] == APR_INT64_T_FMT[0] &&
fmt[1] == APR_INT64_T_FMT[1]) ||
(sizeof(APR_INT64_T_FMT) == 3 &&
fmt[0] == APR_INT64_T_FMT[0]) ||
(sizeof(APR_INT64_T_FMT) > 4 &&
strncmp(fmt, APR_INT64_T_FMT,
sizeof(APR_INT64_T_FMT) - 2) == 0)) {
/* Need to account for trailing 'd' and null in sizeof() */
var_type = IS_QUAD;
fmt += (sizeof(APR_INT64_T_FMT) - 2);
}
else if (*fmt == 'q') {
var_type = IS_QUAD;
fmt++;
}
else if (*fmt == 'l') {
var_type = IS_LONG;
fmt++;
}
else if (*fmt == 'h') {
var_type = IS_SHORT;
fmt++;
}
else {
var_type = IS_INT;
}
/*
* Argument extraction and printing.
* First we determine the argument type.
* Then, we convert the argument to a string.
* On exit from the switch, s points to the string that
* must be printed, s_len has the length of the string
* The precision requirements, if any, are reflected in s_len.
*
* NOTE: pad_char may be set to '0' because of the 0 flag.
* It is reset to ' ' by non-numeric formats
*/
switch (*fmt) {
case 'u':
if (var_type == IS_QUAD) {
i_quad = va_arg(ap, apr_uint64_t);
s = conv_10_quad(i_quad, 1, &is_negative,
&num_buf[NUM_BUF_SIZE], &s_len);
}
else {
if (var_type == IS_LONG)
i_num = (apr_int32_t) va_arg(ap, apr_uint32_t);
else if (var_type == IS_SHORT)
i_num = (apr_int32_t) (unsigned short) va_arg(ap, unsigned int);
else
i_num = (apr_int32_t) va_arg(ap, unsigned int);
s = conv_10(i_num, 1, &is_negative,
&num_buf[NUM_BUF_SIZE], &s_len);
}
FIX_PRECISION(adjust_precision, precision, s, s_len);
break;
case 'd':
case 'i':
if (var_type == IS_QUAD) {
i_quad = va_arg(ap, apr_int64_t);
s = conv_10_quad(i_quad, 0, &is_negative,
&num_buf[NUM_BUF_SIZE], &s_len);
}
else {
if (var_type == IS_LONG)
i_num = va_arg(ap, apr_int32_t);
else if (var_type == IS_SHORT)
i_num = (short) va_arg(ap, int);
else
i_num = va_arg(ap, int);
s = conv_10(i_num, 0, &is_negative,
&num_buf[NUM_BUF_SIZE], &s_len);
}
FIX_PRECISION(adjust_precision, precision, s, s_len);
if (is_negative)
prefix_char = '-';
else if (print_sign)
prefix_char = '+';
else if (print_blank)
prefix_char = ' ';
break;
case 'o':
if (var_type == IS_QUAD) {
ui_quad = va_arg(ap, apr_uint64_t);
s = conv_p2_quad(ui_quad, 3, *fmt,
&num_buf[NUM_BUF_SIZE], &s_len);
}
else {
if (var_type == IS_LONG)
ui_num = va_arg(ap, apr_uint32_t);
else if (var_type == IS_SHORT)
ui_num = (unsigned short) va_arg(ap, unsigned int);
else
ui_num = va_arg(ap, unsigned int);
s = conv_p2(ui_num, 3, *fmt,
&num_buf[NUM_BUF_SIZE], &s_len);
}
FIX_PRECISION(adjust_precision, precision, s, s_len);
if (alternate_form && *s != '0') {
*--s = '0';
s_len++;
}
break;
case 'x':
case 'X':
if (var_type == IS_QUAD) {
ui_quad = va_arg(ap, apr_uint64_t);
s = conv_p2_quad(ui_quad, 4, *fmt,
&num_buf[NUM_BUF_SIZE], &s_len);
}
else {
if (var_type == IS_LONG)
ui_num = va_arg(ap, apr_uint32_t);
else if (var_type == IS_SHORT)
ui_num = (unsigned short) va_arg(ap, unsigned int);
else
ui_num = va_arg(ap, unsigned int);
s = conv_p2(ui_num, 4, *fmt,
&num_buf[NUM_BUF_SIZE], &s_len);
}
FIX_PRECISION(adjust_precision, precision, s, s_len);
if (alternate_form && i_num != 0) {
*--s = *fmt; /* 'x' or 'X' */
*--s = '0';
s_len += 2;
}
break;
case 's':
s = va_arg(ap, char *);
if (s != NULL) {
if (!adjust_precision) {
s_len = strlen(s);
}
else {
/* From the C library standard in section 7.9.6.1:
* ...if the precision is specified, no more then
* that many characters are written. If the
* precision is not specified or is greater
* than the size of the array, the array shall
* contain a null character.
*
* My reading is is precision is specified and
* is less then or equal to the size of the
* array, no null character is required. So
* we can't do a strlen.
*
* This figures out the length of the string
* up to the precision. Once it's long enough
* for the specified precision, we don't care
* anymore.
*
* NOTE: you must do the length comparison
* before the check for the null character.
* Otherwise, you'll check one beyond the
* last valid character.
*/
const char *walk;
for (walk = s, s_len = 0;
(s_len < precision) && (*walk != '\0');
++walk, ++s_len);
}
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
break;
case 'f':
case 'e':
case 'E':
fp_num = va_arg(ap, double);
/*
* We use &num_buf[ 1 ], so that we have room for the sign
*/
s = NULL;
#ifdef HAVE_ISNAN
if (isnan(fp_num)) {
s = "nan";
s_len = 3;
}
#endif
#ifdef HAVE_ISINF
if (!s && isinf(fp_num)) {
s = "inf";
s_len = 3;
}
#endif
if (!s) {
s = conv_fp(*fmt, fp_num, alternate_form,
(int)((adjust_precision == NO) ? FLOAT_DIGITS : precision),
&is_negative, &num_buf[1], &s_len);
if (is_negative)
prefix_char = '-';
else if (print_sign)
prefix_char = '+';
else if (print_blank)
prefix_char = ' ';
}
break;
case 'g':
case 'G':
if (adjust_precision == NO)
precision = FLOAT_DIGITS;
else if (precision == 0)
precision = 1;
/*
* * We use &num_buf[ 1 ], so that we have room for the sign
*/
s = apr_gcvt(va_arg(ap, double), (int) precision, &num_buf[1],
alternate_form);
if (*s == '-')
prefix_char = *s++;
else if (print_sign)
prefix_char = '+';
else if (print_blank)
prefix_char = ' ';
s_len = strlen(s);
if (alternate_form && (q = strchr(s, '.')) == NULL) {
s[s_len++] = '.';
s[s_len] = '\0'; /* delimit for following strchr() */
}
if (*fmt == 'G' && (q = strchr(s, 'e')) != NULL)
*q = 'E';
break;
case 'c':
char_buf[0] = (char) (va_arg(ap, int));
s = &char_buf[0];
s_len = 1;
pad_char = ' ';
break;
case '%':
char_buf[0] = '%';
s = &char_buf[0];
s_len = 1;
pad_char = ' ';
break;
case 'n':
if (var_type == IS_QUAD)
*(va_arg(ap, apr_int64_t *)) = cc;
else if (var_type == IS_LONG)
*(va_arg(ap, long *)) = cc;
else if (var_type == IS_SHORT)
*(va_arg(ap, short *)) = cc;
else
*(va_arg(ap, int *)) = cc;
print_something = NO;
break;
/*
* This is where we extend the printf format, with a second
* type specifier
*/
case 'p':
switch(*++fmt) {
/*
* If the pointer size is equal to or smaller than the size
* of the largest unsigned int, we convert the pointer to a
* hex number, otherwise we print "%p" to indicate that we
* don't handle "%p".
*/
case 'p':
#if APR_SIZEOF_VOIDP == 8
if (sizeof(void *) <= sizeof(apr_uint64_t)) {
ui_quad = (apr_uint64_t) va_arg(ap, void *);
s = conv_p2_quad(ui_quad, 4, 'x',
&num_buf[NUM_BUF_SIZE], &s_len);
}
#else
if (sizeof(void *) <= sizeof(apr_uint32_t)) {
ui_num = (apr_uint32_t) va_arg(ap, void *);
s = conv_p2(ui_num, 4, 'x',
&num_buf[NUM_BUF_SIZE], &s_len);
}
#endif
else {
s = "%p";
s_len = 2;
prefix_char = NUL;
}
pad_char = ' ';
break;
/* print an apr_sockaddr_t as a.b.c.d:port */
case 'I':
{
apr_sockaddr_t *sa;
sa = va_arg(ap, apr_sockaddr_t *);
if (sa != NULL) {
s = conv_apr_sockaddr(sa, &num_buf[NUM_BUF_SIZE], &s_len);
if (adjust_precision && precision < s_len)
s_len = precision;
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
}
break;
/* print a struct in_addr as a.b.c.d */
case 'A':
{
struct in_addr *ia;
ia = va_arg(ap, struct in_addr *);
if (ia != NULL) {
s = conv_in_addr(ia, &num_buf[NUM_BUF_SIZE], &s_len);
if (adjust_precision && precision < s_len)
s_len = precision;
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
}
break;
/* print the error for an apr_status_t */
case 'm':
{
apr_status_t *mrv;
mrv = va_arg(ap, apr_status_t *);
if (mrv != NULL) {
s = apr_strerror(*mrv, num_buf, NUM_BUF_SIZE-1);
s_len = strlen(s);
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
}
break;
case 'T':
#if APR_HAS_THREADS
{
apr_os_thread_t *tid;
tid = va_arg(ap, apr_os_thread_t *);
if (tid != NULL) {
s = conv_os_thread_t(tid, &num_buf[NUM_BUF_SIZE], &s_len);
if (adjust_precision && precision < s_len)
s_len = precision;
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
}
#else
char_buf[0] = '0';
s = &char_buf[0];
s_len = 1;
pad_char = ' ';
#endif
break;
case 't':
#if APR_HAS_THREADS
{
apr_os_thread_t *tid;
tid = va_arg(ap, apr_os_thread_t *);
if (tid != NULL) {
s = conv_os_thread_t_hex(tid, &num_buf[NUM_BUF_SIZE], &s_len);
if (adjust_precision && precision < s_len)
s_len = precision;
}
else {
s = S_NULL;
s_len = S_NULL_LEN;
}
pad_char = ' ';
}
#else
char_buf[0] = '0';
s = &char_buf[0];
s_len = 1;
pad_char = ' ';
#endif
break;
case 'B':
case 'F':
case 'S':
{
char buf[5];
apr_off_t size = 0;
if (*fmt == 'B') {
apr_uint32_t *arg = va_arg(ap, apr_uint32_t *);
size = (arg) ? *arg : 0;
}
else if (*fmt == 'F') {
apr_off_t *arg = va_arg(ap, apr_off_t *);
size = (arg) ? *arg : 0;
}
else {
apr_size_t *arg = va_arg(ap, apr_size_t *);
size = (arg) ? *arg : 0;
}
s = apr_strfsize(size, buf);
s_len = strlen(s);
pad_char = ' ';
}
break;
case NUL:
/* if %p ends the string, oh well ignore it */
continue;
default:
s = "bogus %p";
s_len = 8;
prefix_char = NUL;
(void)va_arg(ap, void *); /* skip the bogus argument on the stack */
break;
}
break;
case NUL:
/*
* The last character of the format string was %.
* We ignore it.
*/
continue;
/*
* The default case is for unrecognized %'s.
* We print %<char> to help the user identify what
* option is not understood.
* This is also useful in case the user wants to pass
* the output of format_converter to another function
* that understands some other %<char> (like syslog).
* Note that we can't point s inside fmt because the
* unknown <char> could be preceded by width etc.
*/
default:
char_buf[0] = '%';
char_buf[1] = *fmt;
s = char_buf;
s_len = 2;
pad_char = ' ';
break;
}
if (prefix_char != NUL && s != S_NULL && s != char_buf) {
*--s = prefix_char;
s_len++;
}
if (adjust_width && adjust == RIGHT && min_width > s_len) {
if (pad_char == '0' && prefix_char != NUL) {
INS_CHAR(*s, sp, bep, cc);
s++;
s_len--;
min_width--;
}
PAD(min_width, s_len, pad_char);
}
/*
* Print the string s.
*/
if (print_something == YES) {
for (i = s_len; i != 0; i--) {
INS_CHAR(*s, sp, bep, cc);
s++;
}
}
if (adjust_width && adjust == LEFT && min_width > s_len)
PAD(min_width, s_len, pad_char);
}
fmt++;
}
vbuff->curpos = sp;
return cc;
}
static int snprintf_flush(apr_vformatter_buff_t *vbuff)
{
/* if the buffer fills we have to abort immediately, there is no way
* to "flush" an apr_snprintf... there's nowhere to flush it to.
*/
return -1;
}
APR_DECLARE_NONSTD(int) apr_snprintf(char *buf, apr_size_t len,
const char *format, ...)
{
int cc;
va_list ap;
apr_vformatter_buff_t vbuff;
if (len == 0) {
/* NOTE: This is a special case; we just want to return the number
* of chars that would be written (minus \0) if the buffer
* size was infinite. We leverage the fact that INS_CHAR
* just does actual inserts iff the buffer pointer is non-NULL.
* In this case, we don't care what buf is; it can be NULL, since
* we don't touch it at all.
*/
vbuff.curpos = NULL;
vbuff.endpos = NULL;
} else {
/* save one byte for nul terminator */
vbuff.curpos = buf;
vbuff.endpos = buf + len - 1;
}
va_start(ap, format);
cc = apr_vformatter(snprintf_flush, &vbuff, format, ap);
va_end(ap);
if (len != 0) {
*vbuff.curpos = '\0';
}
return (cc == -1) ? (int)len - 1 : cc;
}
APR_DECLARE(int) apr_vsnprintf(char *buf, apr_size_t len, const char *format,
va_list ap)
{
int cc;
apr_vformatter_buff_t vbuff;
if (len == 0) {
/* See above note */
vbuff.curpos = NULL;
vbuff.endpos = NULL;
} else {
/* save one byte for nul terminator */
vbuff.curpos = buf;
vbuff.endpos = buf + len - 1;
}
cc = apr_vformatter(snprintf_flush, &vbuff, format, ap);
if (len != 0) {
*vbuff.curpos = '\0';
}
return (cc == -1) ? (int)len - 1 : cc;
}