/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- main
- thread_mutex_func
- thread_rwlock_func
- test_thread_mutex
- test_thread_mutex_nested
- test_thread_rwlock
- main
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_thread_proc.h"
#include "apr_thread_mutex.h"
#include "apr_thread_rwlock.h"
#include "apr_file_io.h"
#include "apr_errno.h"
#include "apr_general.h"
#include "apr_getopt.h"
#include "errno.h"
#include <stdio.h>
#include <stdlib.h>
#include "testutil.h"
#if !APR_HAS_THREADS
int main(void)
{
printf("This program won't work on this platform because there is no "
"support for threads.\n");
return 0;
}
#else /* !APR_HAS_THREADS */
#define MAX_COUNTER 1000000
#define MAX_THREADS 6
static int verbose = 0;
static long mutex_counter;
static apr_thread_mutex_t *thread_lock;
void * APR_THREAD_FUNC thread_mutex_func(apr_thread_t *thd, void *data);
apr_status_t test_thread_mutex(int num_threads); /* apr_thread_mutex_t */
static apr_thread_rwlock_t *thread_rwlock;
void * APR_THREAD_FUNC thread_rwlock_func(apr_thread_t *thd, void *data);
apr_status_t test_thread_rwlock(int num_threads); /* apr_thread_rwlock_t */
int test_thread_mutex_nested(int num_threads);
apr_pool_t *pool;
int i = 0, x = 0;
void * APR_THREAD_FUNC thread_mutex_func(apr_thread_t *thd, void *data)
{
int i;
for (i = 0; i < MAX_COUNTER; i++) {
apr_thread_mutex_lock(thread_lock);
mutex_counter++;
apr_thread_mutex_unlock(thread_lock);
}
return NULL;
}
void * APR_THREAD_FUNC thread_rwlock_func(apr_thread_t *thd, void *data)
{
int i;
for (i = 0; i < MAX_COUNTER; i++) {
apr_thread_rwlock_wrlock(thread_rwlock);
mutex_counter++;
apr_thread_rwlock_unlock(thread_rwlock);
}
return NULL;
}
int test_thread_mutex(int num_threads)
{
apr_thread_t *t[MAX_THREADS];
apr_status_t s[MAX_THREADS];
apr_time_t time_start, time_stop;
int i;
mutex_counter = 0;
printf("apr_thread_mutex_t Tests\n");
printf("%-60s", " Initializing the apr_thread_mutex_t (UNNESTED)");
s[0] = apr_thread_mutex_create(&thread_lock, APR_THREAD_MUTEX_UNNESTED, pool);
if (s[0] != APR_SUCCESS) {
printf("Failed!\n");
return s[0];
}
printf("OK\n");
apr_thread_mutex_lock(thread_lock);
/* set_concurrency(4)? -aaron */
printf(" Starting %d threads ", num_threads);
for (i = 0; i < num_threads; ++i) {
s[i] = apr_thread_create(&t[i], NULL, thread_mutex_func, NULL, pool);
if (s[i] != APR_SUCCESS) {
printf("Failed!\n");
return s[i];
}
}
printf("OK\n");
time_start = apr_time_now();
apr_thread_mutex_unlock(thread_lock);
/* printf("%-60s", " Waiting for threads to exit"); */
for (i = 0; i < num_threads; ++i) {
apr_thread_join(&s[i], t[i]);
}
/* printf("OK\n"); */
time_stop = apr_time_now();
printf("microseconds: %" APR_INT64_T_FMT " usec\n",
(time_stop - time_start));
if (mutex_counter != MAX_COUNTER * num_threads)
printf("error: counter = %ld\n", mutex_counter);
return APR_SUCCESS;
}
int test_thread_mutex_nested(int num_threads)
{
apr_thread_t *t[MAX_THREADS];
apr_status_t s[MAX_THREADS];
apr_time_t time_start, time_stop;
int i;
mutex_counter = 0;
printf("apr_thread_mutex_t Tests\n");
printf("%-60s", " Initializing the apr_thread_mutex_t (NESTED)");
s[0] = apr_thread_mutex_create(&thread_lock, APR_THREAD_MUTEX_NESTED, pool);
if (s[0] != APR_SUCCESS) {
printf("Failed!\n");
return s[0];
}
printf("OK\n");
apr_thread_mutex_lock(thread_lock);
/* set_concurrency(4)? -aaron */
printf(" Starting %d threads ", num_threads);
for (i = 0; i < num_threads; ++i) {
s[i] = apr_thread_create(&t[i], NULL, thread_mutex_func, NULL, pool);
if (s[i] != APR_SUCCESS) {
printf("Failed!\n");
return s[i];
}
}
printf("OK\n");
time_start = apr_time_now();
apr_thread_mutex_unlock(thread_lock);
/* printf("%-60s", " Waiting for threads to exit"); */
for (i = 0; i < num_threads; ++i) {
apr_thread_join(&s[i], t[i]);
}
/* printf("OK\n"); */
time_stop = apr_time_now();
printf("microseconds: %" APR_INT64_T_FMT " usec\n",
(time_stop - time_start));
if (mutex_counter != MAX_COUNTER * num_threads)
printf("error: counter = %ld\n", mutex_counter);
return APR_SUCCESS;
}
int test_thread_rwlock(int num_threads)
{
apr_thread_t *t[MAX_THREADS];
apr_status_t s[MAX_THREADS];
apr_time_t time_start, time_stop;
int i;
mutex_counter = 0;
printf("apr_thread_rwlock_t Tests\n");
printf("%-60s", " Initializing the apr_thread_rwlock_t");
s[0] = apr_thread_rwlock_create(&thread_rwlock, pool);
if (s[0] != APR_SUCCESS) {
printf("Failed!\n");
return s[0];
}
printf("OK\n");
apr_thread_rwlock_wrlock(thread_rwlock);
/* set_concurrency(4)? -aaron */
printf(" Starting %d threads ", num_threads);
for (i = 0; i < num_threads; ++i) {
s[i] = apr_thread_create(&t[i], NULL, thread_rwlock_func, NULL, pool);
if (s[i] != APR_SUCCESS) {
printf("Failed!\n");
return s[i];
}
}
printf("OK\n");
time_start = apr_time_now();
apr_thread_rwlock_unlock(thread_rwlock);
/* printf("%-60s", " Waiting for threads to exit"); */
for (i = 0; i < num_threads; ++i) {
apr_thread_join(&s[i], t[i]);
}
/* printf("OK\n"); */
time_stop = apr_time_now();
printf("microseconds: %" APR_INT64_T_FMT " usec\n",
(time_stop - time_start));
if (mutex_counter != MAX_COUNTER * num_threads)
printf("error: counter = %ld\n", mutex_counter);
return APR_SUCCESS;
}
int main(int argc, const char * const *argv)
{
apr_status_t rv;
char errmsg[200];
const char *lockname = "multi.lock";
apr_getopt_t *opt;
char optchar;
const char *optarg;
printf("APR Lock Performance Test\n==============\n\n");
apr_initialize();
atexit(apr_terminate);
if (apr_pool_create(&pool, NULL) != APR_SUCCESS)
exit(-1);
if ((rv = apr_getopt_init(&opt, pool, argc, argv)) != APR_SUCCESS) {
fprintf(stderr, "Could not set up to parse options: [%d] %s\n",
rv, apr_strerror(rv, errmsg, sizeof errmsg));
exit(-1);
}
while ((rv = apr_getopt(opt, "vf:", &optchar, &optarg)) == APR_SUCCESS) {
if (optchar == 'v') {
verbose = 1;
}
if (optchar == 'f') {
lockname = optarg;
}
}
if (rv != APR_SUCCESS && rv != APR_EOF) {
fprintf(stderr, "Could not parse options: [%d] %s\n",
rv, apr_strerror(rv, errmsg, sizeof errmsg));
exit(-1);
}
for (i = 1; i <= MAX_THREADS; ++i) {
if ((rv = test_thread_mutex(i)) != APR_SUCCESS) {
fprintf(stderr,"thread_mutex test failed : [%d] %s\n",
rv, apr_strerror(rv, (char*)errmsg, 200));
exit(-3);
}
if ((rv = test_thread_mutex_nested(i)) != APR_SUCCESS) {
fprintf(stderr,"thread_mutex (NESTED) test failed : [%d] %s\n",
rv, apr_strerror(rv, (char*)errmsg, 200));
exit(-4);
}
if ((rv = test_thread_rwlock(i)) != APR_SUCCESS) {
fprintf(stderr,"thread_rwlock test failed : [%d] %s\n",
rv, apr_strerror(rv, (char*)errmsg, 200));
exit(-6);
}
}
return 0;
}
#endif /* !APR_HAS_THREADS */