This source file includes following definitions.
- uv__platform_loop_init
- uv__platform_loop_delete
- uv__hrtime
- uv_exepath
- uv_get_free_memory
- uv_get_total_memory
- uv_loadavg
- uv_setup_args
- uv_set_process_title
- uv_get_process_title
- uv_resident_set_memory
- uv_uptime
- uv_cpu_info
- uv_free_cpu_info
- uv_interface_addresses
- uv_free_interface_addresses
#include "uv.h"
#include "internal.h"
#include <assert.h>
#include <string.h>
#include <errno.h>
#include <ifaddrs.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <kvm.h>
#include <paths.h>
#include <sys/user.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <vm/vm_param.h>
#include <time.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#undef NANOSEC
#define NANOSEC ((uint64_t) 1e9)
#ifndef CPUSTATES
# define CPUSTATES 5U
#endif
#ifndef CP_USER
# define CP_USER 0
# define CP_NICE 1
# define CP_SYS 2
# define CP_IDLE 3
# define CP_INTR 4
#endif
static char *process_title;
int uv__platform_loop_init(uv_loop_t* loop, int default_loop) {
return uv__kqueue_init(loop);
}
void uv__platform_loop_delete(uv_loop_t* loop) {
}
uint64_t uv__hrtime(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (((uint64_t) ts.tv_sec) * NANOSEC + ts.tv_nsec);
}
int uv_exepath(char* buffer, size_t* size) {
int mib[4];
size_t cb;
if (buffer == NULL || size == NULL)
return -EINVAL;
#ifdef __DragonFly__
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_ARGS;
mib[3] = getpid();
#else
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
#endif
cb = *size;
if (sysctl(mib, 4, buffer, &cb, NULL, 0))
return -errno;
*size = strlen(buffer);
return 0;
}
uint64_t uv_get_free_memory(void) {
int freecount;
size_t size = sizeof(freecount);
if (sysctlbyname("vm.stats.vm.v_free_count", &freecount, &size, NULL, 0))
return -errno;
return (uint64_t) freecount * sysconf(_SC_PAGESIZE);
}
uint64_t uv_get_total_memory(void) {
unsigned long info;
int which[] = {CTL_HW, HW_PHYSMEM};
size_t size = sizeof(info);
if (sysctl(which, 2, &info, &size, NULL, 0))
return -errno;
return (uint64_t) info;
}
void uv_loadavg(double avg[3]) {
struct loadavg info;
size_t size = sizeof(info);
int which[] = {CTL_VM, VM_LOADAVG};
if (sysctl(which, 2, &info, &size, NULL, 0) < 0) return;
avg[0] = (double) info.ldavg[0] / info.fscale;
avg[1] = (double) info.ldavg[1] / info.fscale;
avg[2] = (double) info.ldavg[2] / info.fscale;
}
char** uv_setup_args(int argc, char** argv) {
process_title = argc ? strdup(argv[0]) : NULL;
return argv;
}
int uv_set_process_title(const char* title) {
int oid[4];
if (process_title) free(process_title);
process_title = strdup(title);
oid[0] = CTL_KERN;
oid[1] = KERN_PROC;
oid[2] = KERN_PROC_ARGS;
oid[3] = getpid();
sysctl(oid,
ARRAY_SIZE(oid),
NULL,
NULL,
process_title,
strlen(process_title) + 1);
return 0;
}
int uv_get_process_title(char* buffer, size_t size) {
if (process_title) {
strncpy(buffer, process_title, size);
} else {
if (size > 0) {
buffer[0] = '\0';
}
}
return 0;
}
int uv_resident_set_memory(size_t* rss) {
kvm_t *kd = NULL;
struct kinfo_proc *kinfo = NULL;
pid_t pid;
int nprocs;
size_t page_size = getpagesize();
pid = getpid();
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
if (kd == NULL) goto error;
kinfo = kvm_getprocs(kd, KERN_PROC_PID, pid, &nprocs);
if (kinfo == NULL) goto error;
#ifdef __DragonFly__
*rss = kinfo->kp_vm_rssize * page_size;
#else
*rss = kinfo->ki_rssize * page_size;
#endif
kvm_close(kd);
return 0;
error:
if (kd) kvm_close(kd);
return -EPERM;
}
int uv_uptime(double* uptime) {
time_t now;
struct timeval info;
size_t size = sizeof(info);
static int which[] = {CTL_KERN, KERN_BOOTTIME};
if (sysctl(which, 2, &info, &size, NULL, 0))
return -errno;
now = time(NULL);
*uptime = (double)(now - info.tv_sec);
return 0;
}
int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) {
unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK),
multiplier = ((uint64_t)1000L / ticks), cpuspeed, maxcpus,
cur = 0;
uv_cpu_info_t* cpu_info;
const char* maxcpus_key;
const char* cptimes_key;
char model[512];
long* cp_times;
int numcpus;
size_t size;
int i;
#if defined(__DragonFly__)
maxcpus_key = "hw.ncpu";
cptimes_key = "kern.cp_time";
#else
maxcpus_key = "kern.smp.maxcpus";
cptimes_key = "kern.cp_times";
#endif
size = sizeof(model);
if (sysctlbyname("hw.model", &model, &size, NULL, 0))
return -errno;
size = sizeof(numcpus);
if (sysctlbyname("hw.ncpu", &numcpus, &size, NULL, 0))
return -errno;
*cpu_infos = malloc(numcpus * sizeof(**cpu_infos));
if (!(*cpu_infos))
return -ENOMEM;
*count = numcpus;
size = sizeof(cpuspeed);
if (sysctlbyname("hw.clockrate", &cpuspeed, &size, NULL, 0)) {
SAVE_ERRNO(free(*cpu_infos));
return -errno;
}
size = sizeof(maxcpus);
if (sysctlbyname(maxcpus_key, &maxcpus, &size, NULL, 0)) {
SAVE_ERRNO(free(*cpu_infos));
return -errno;
}
size = maxcpus * CPUSTATES * sizeof(long);
cp_times = malloc(size);
if (cp_times == NULL) {
free(*cpu_infos);
return -ENOMEM;
}
if (sysctlbyname(cptimes_key, cp_times, &size, NULL, 0)) {
SAVE_ERRNO(free(cp_times));
SAVE_ERRNO(free(*cpu_infos));
return -errno;
}
for (i = 0; i < numcpus; i++) {
cpu_info = &(*cpu_infos)[i];
cpu_info->cpu_times.user = (uint64_t)(cp_times[CP_USER+cur]) * multiplier;
cpu_info->cpu_times.nice = (uint64_t)(cp_times[CP_NICE+cur]) * multiplier;
cpu_info->cpu_times.sys = (uint64_t)(cp_times[CP_SYS+cur]) * multiplier;
cpu_info->cpu_times.idle = (uint64_t)(cp_times[CP_IDLE+cur]) * multiplier;
cpu_info->cpu_times.irq = (uint64_t)(cp_times[CP_INTR+cur]) * multiplier;
cpu_info->model = strdup(model);
cpu_info->speed = cpuspeed;
cur+=CPUSTATES;
}
free(cp_times);
return 0;
}
void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) {
int i;
for (i = 0; i < count; i++) {
free(cpu_infos[i].model);
}
free(cpu_infos);
}
int uv_interface_addresses(uv_interface_address_t** addresses, int* count) {
struct ifaddrs *addrs, *ent;
uv_interface_address_t* address;
int i;
struct sockaddr_dl *sa_addr;
if (getifaddrs(&addrs))
return -errno;
*count = 0;
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)) ||
(ent->ifa_addr == NULL) ||
(ent->ifa_addr->sa_family == AF_LINK)) {
continue;
}
(*count)++;
}
*addresses = malloc(*count * sizeof(**addresses));
if (!(*addresses))
return -ENOMEM;
address = *addresses;
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)))
continue;
if (ent->ifa_addr == NULL)
continue;
if (ent->ifa_addr->sa_family == AF_LINK)
continue;
address->name = strdup(ent->ifa_name);
if (ent->ifa_addr->sa_family == AF_INET6) {
address->address.address6 = *((struct sockaddr_in6*) ent->ifa_addr);
} else {
address->address.address4 = *((struct sockaddr_in*) ent->ifa_addr);
}
if (ent->ifa_netmask->sa_family == AF_INET6) {
address->netmask.netmask6 = *((struct sockaddr_in6*) ent->ifa_netmask);
} else {
address->netmask.netmask4 = *((struct sockaddr_in*) ent->ifa_netmask);
}
address->is_internal = !!(ent->ifa_flags & IFF_LOOPBACK);
address++;
}
for (ent = addrs; ent != NULL; ent = ent->ifa_next) {
if (!((ent->ifa_flags & IFF_UP) && (ent->ifa_flags & IFF_RUNNING)) ||
(ent->ifa_addr == NULL) ||
(ent->ifa_addr->sa_family != AF_LINK)) {
continue;
}
address = *addresses;
for (i = 0; i < (*count); i++) {
if (strcmp(address->name, ent->ifa_name) == 0) {
sa_addr = (struct sockaddr_dl*)(ent->ifa_addr);
memcpy(address->phys_addr, LLADDR(sa_addr), sizeof(address->phys_addr));
}
address++;
}
}
freeifaddrs(addrs);
return 0;
}
void uv_free_interface_addresses(uv_interface_address_t* addresses,
int count) {
int i;
for (i = 0; i < count; i++) {
free(addresses[i].name);
}
free(addresses);
}