root/modules/calib3d/src/fundam.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. haveCollinearPoints
  2. checkSubset
  3. runKernel
  4. computeError
  5. compute
  6. createAndRunRHORegistrator
  7. findHomography
  8. findHomography
  9. run7Point
  10. run8Point
  11. checkSubset
  12. runKernel
  13. computeError
  14. findFundamentalMat
  15. findFundamentalMat
  16. computeCorrespondEpilines
  17. convertPointsFromHomogeneous
  18. convertPointsToHomogeneous
  19. convertPointsHomogeneous

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "rho.h"
#include <iostream>

namespace cv
{

static bool haveCollinearPoints( const Mat& m, int count )
{
    int j, k, i = count-1;
    const Point2f* ptr = m.ptr<Point2f>();

    // check that the i-th selected point does not belong
    // to a line connecting some previously selected points
    for( j = 0; j < i; j++ )
    {
        double dx1 = ptr[j].x - ptr[i].x;
        double dy1 = ptr[j].y - ptr[i].y;
        for( k = 0; k < j; k++ )
        {
            double dx2 = ptr[k].x - ptr[i].x;
            double dy2 = ptr[k].y - ptr[i].y;
            if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
                return true;
        }
    }
    return false;
}


class HomographyEstimatorCallback : public PointSetRegistrator::Callback
{
public:
    bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
    {
        Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
        if( haveCollinearPoints(ms1, count) || haveCollinearPoints(ms2, count) )
            return false;

        // We check whether the minimal set of points for the homography estimation
        // are geometrically consistent. We check if every 3 correspondences sets
        // fulfills the constraint.
        //
        // The usefullness of this constraint is explained in the paper:
        //
        // "Speeding-up homography estimation in mobile devices"
        // Journal of Real-Time Image Processing. 2013. DOI: 10.1007/s11554-012-0314-1
        // Pablo Marquez-Neila, Javier Lopez-Alberca, Jose M. Buenaposada, Luis Baumela
        if( count == 4 )
        {
            static const int tt[][3] = {{0, 1, 2}, {1, 2, 3}, {0, 2, 3}, {0, 1, 3}};
            const Point2f* src = ms1.ptr<Point2f>();
            const Point2f* dst = ms2.ptr<Point2f>();
            int negative = 0;

            for( int i = 0; i < 4; i++ )
            {
                const int* t = tt[i];
                Matx33d A(src[t[0]].x, src[t[0]].y, 1., src[t[1]].x, src[t[1]].y, 1., src[t[2]].x, src[t[2]].y, 1.);
                Matx33d B(dst[t[0]].x, dst[t[0]].y, 1., dst[t[1]].x, dst[t[1]].y, 1., dst[t[2]].x, dst[t[2]].y, 1.);

                negative += determinant(A)*determinant(B) < 0;
            }
            if( negative != 0 && negative != 4 )
                return false;
        }

        return true;
    }

    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        int i, count = m1.checkVector(2);
        const Point2f* M = m1.ptr<Point2f>();
        const Point2f* m = m2.ptr<Point2f>();

        double LtL[9][9], W[9][1], V[9][9];
        Mat _LtL( 9, 9, CV_64F, &LtL[0][0] );
        Mat matW( 9, 1, CV_64F, W );
        Mat matV( 9, 9, CV_64F, V );
        Mat _H0( 3, 3, CV_64F, V[8] );
        Mat _Htemp( 3, 3, CV_64F, V[7] );
        Point2d cM(0,0), cm(0,0), sM(0,0), sm(0,0);

        for( i = 0; i < count; i++ )
        {
            cm.x += m[i].x; cm.y += m[i].y;
            cM.x += M[i].x; cM.y += M[i].y;
        }

        cm.x /= count;
        cm.y /= count;
        cM.x /= count;
        cM.y /= count;

        for( i = 0; i < count; i++ )
        {
            sm.x += fabs(m[i].x - cm.x);
            sm.y += fabs(m[i].y - cm.y);
            sM.x += fabs(M[i].x - cM.x);
            sM.y += fabs(M[i].y - cM.y);
        }

        if( fabs(sm.x) < DBL_EPSILON || fabs(sm.y) < DBL_EPSILON ||
            fabs(sM.x) < DBL_EPSILON || fabs(sM.y) < DBL_EPSILON )
            return 0;
        sm.x = count/sm.x; sm.y = count/sm.y;
        sM.x = count/sM.x; sM.y = count/sM.y;

        double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 };
        double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 };
        Mat _invHnorm( 3, 3, CV_64FC1, invHnorm );
        Mat _Hnorm2( 3, 3, CV_64FC1, Hnorm2 );

        _LtL.setTo(Scalar::all(0));
        for( i = 0; i < count; i++ )
        {
            double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y;
            double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y;
            double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x };
            double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y };
            int j, k;
            for( j = 0; j < 9; j++ )
                for( k = j; k < 9; k++ )
                    LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];
        }
        completeSymm( _LtL );

        eigen( _LtL, matW, matV );
        _Htemp = _invHnorm*_H0;
        _H0 = _Htemp*_Hnorm2;
        _H0.convertTo(_model, _H0.type(), 1./_H0.at<double>(2,2) );

        return 1;
    }

    void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
        int i, count = m1.checkVector(2);
        const Point2f* M = m1.ptr<Point2f>();
        const Point2f* m = m2.ptr<Point2f>();
        const double* H = model.ptr<double>();
        float Hf[] = { (float)H[0], (float)H[1], (float)H[2], (float)H[3], (float)H[4], (float)H[5], (float)H[6], (float)H[7] };

        _err.create(count, 1, CV_32F);
        float* err = _err.getMat().ptr<float>();

        for( i = 0; i < count; i++ )
        {
            float ww = 1.f/(Hf[6]*M[i].x + Hf[7]*M[i].y + 1.f);
            float dx = (Hf[0]*M[i].x + Hf[1]*M[i].y + Hf[2])*ww - m[i].x;
            float dy = (Hf[3]*M[i].x + Hf[4]*M[i].y + Hf[5])*ww - m[i].y;
            err[i] = (float)(dx*dx + dy*dy);
        }
    }
};


class HomographyRefineCallback : public LMSolver::Callback
{
public:
    HomographyRefineCallback(InputArray _src, InputArray _dst)
    {
        src = _src.getMat();
        dst = _dst.getMat();
    }

    bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
    {
        int i, count = src.checkVector(2);
        Mat param = _param.getMat();
        _err.create(count*2, 1, CV_64F);
        Mat err = _err.getMat(), J;
        if( _Jac.needed())
        {
            _Jac.create(count*2, param.rows, CV_64F);
            J = _Jac.getMat();
            CV_Assert( J.isContinuous() && J.cols == 8 );
        }

        const Point2f* M = src.ptr<Point2f>();
        const Point2f* m = dst.ptr<Point2f>();
        const double* h = param.ptr<double>();
        double* errptr = err.ptr<double>();
        double* Jptr = J.data ? J.ptr<double>() : 0;

        for( i = 0; i < count; i++ )
        {
            double Mx = M[i].x, My = M[i].y;
            double ww = h[6]*Mx + h[7]*My + 1.;
            ww = fabs(ww) > DBL_EPSILON ? 1./ww : 0;
            double xi = (h[0]*Mx + h[1]*My + h[2])*ww;
            double yi = (h[3]*Mx + h[4]*My + h[5])*ww;
            errptr[i*2] = xi - m[i].x;
            errptr[i*2+1] = yi - m[i].y;

            if( Jptr )
            {
                Jptr[0] = Mx*ww; Jptr[1] = My*ww; Jptr[2] = ww;
                Jptr[3] = Jptr[4] = Jptr[5] = 0.;
                Jptr[6] = -Mx*ww*xi; Jptr[7] = -My*ww*xi;
                Jptr[8] = Jptr[9] = Jptr[10] = 0.;
                Jptr[11] = Mx*ww; Jptr[12] = My*ww; Jptr[13] = ww;
                Jptr[14] = -Mx*ww*yi; Jptr[15] = -My*ww*yi;

                Jptr += 16;
            }
        }

        return true;
    }

    Mat src, dst;
};

}



namespace cv{
static bool createAndRunRHORegistrator(double confidence,
                                       int    maxIters,
                                       double ransacReprojThreshold,
                                       int    npoints,
                                       InputArray  _src,
                                       InputArray  _dst,
                                       OutputArray _H,
                                       OutputArray _tempMask){
    Mat    src = _src.getMat();
    Mat    dst = _dst.getMat();
    Mat    tempMask;
    bool   result;
    double beta = 0.35;/* 0.35 is a value that often works. */

    /* Create temporary output matrix (RHO outputs a single-precision H only). */
    Mat tmpH = Mat(3, 3, CV_32FC1);

    /* Create output mask. */
    tempMask = Mat(npoints, 1, CV_8U);

    /**
     * Make use of the RHO estimator API.
     *
     * This is where the math happens. A homography estimation context is
     * initialized, used, then finalized.
     */

    Ptr<RHO_HEST> p = rhoInit();

    /**
     * Optional. Ideally, the context would survive across calls to
     * findHomography(), but no clean way appears to exit to do so. The price
     * to pay is marginally more computational work than strictly needed.
     */

    rhoEnsureCapacity(p, npoints, beta);

    /**
     * The critical call. All parameters are heavily documented in rhorefc.h.
     *
     * Currently, NR (Non-Randomness criterion) and Final Refinement (with
     * internal, optimized Levenberg-Marquardt method) are enabled. However,
     * while refinement seems to correctly smooth jitter most of the time, when
     * refinement fails it tends to make the estimate visually very much worse.
     * It may be necessary to remove the refinement flags in a future commit if
     * this behaviour is too problematic.
     */

    result = !!rhoHest(p,
                      (const float*)src.data,
                      (const float*)dst.data,
                      (char*)       tempMask.data,
                      (unsigned)    npoints,
                      (float)       ransacReprojThreshold,
                      (unsigned)    maxIters,
                      (unsigned)    maxIters,
                      confidence,
                      4U,
                      beta,
                      RHO_FLAG_ENABLE_NR | RHO_FLAG_ENABLE_FINAL_REFINEMENT,
                      NULL,
                      (float*)tmpH.data);

    /* Convert float homography to double precision. */
    tmpH.convertTo(_H, CV_64FC1);

    /* Maps non-zero mask elems to 1, for the sake of the testcase. */
    for(int k=0;k<npoints;k++){
        tempMask.data[k] = !!tempMask.data[k];
    }
    tempMask.copyTo(_tempMask);

    return result;
}
}


cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
                            int method, double ransacReprojThreshold, OutputArray _mask,
                            const int maxIters, const double confidence)
{
    const double defaultRANSACReprojThreshold = 3;
    bool result = false;

    Mat points1 = _points1.getMat(), points2 = _points2.getMat();
    Mat src, dst, H, tempMask;
    int npoints = -1;

    for( int i = 1; i <= 2; i++ )
    {
        Mat& p = i == 1 ? points1 : points2;
        Mat& m = i == 1 ? src : dst;
        npoints = p.checkVector(2, -1, false);
        if( npoints < 0 )
        {
            npoints = p.checkVector(3, -1, false);
            if( npoints < 0 )
                CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
            if( npoints == 0 )
                return Mat();
            convertPointsFromHomogeneous(p, p);
        }
        p.reshape(2, npoints).convertTo(m, CV_32F);
    }

    CV_Assert( src.checkVector(2) == dst.checkVector(2) );

    if( ransacReprojThreshold <= 0 )
        ransacReprojThreshold = defaultRANSACReprojThreshold;

    Ptr<PointSetRegistrator::Callback> cb = makePtr<HomographyEstimatorCallback>();

    if( method == 0 || npoints == 4 )
    {
        tempMask = Mat::ones(npoints, 1, CV_8U);
        result = cb->runKernel(src, dst, H) > 0;
    }
    else if( method == RANSAC )
        result = createRANSACPointSetRegistrator(cb, 4, ransacReprojThreshold, confidence, maxIters)->run(src, dst, H, tempMask);
    else if( method == LMEDS )
        result = createLMeDSPointSetRegistrator(cb, 4, confidence, maxIters)->run(src, dst, H, tempMask);
    else if( method == RHO )
        result = createAndRunRHORegistrator(confidence, maxIters, ransacReprojThreshold, npoints, src, dst, H, tempMask);
    else
        CV_Error(Error::StsBadArg, "Unknown estimation method");

    if( result && npoints > 4 && method != RHO)
    {
        compressElems( src.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        npoints = compressElems( dst.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        if( npoints > 0 )
        {
            Mat src1 = src.rowRange(0, npoints);
            Mat dst1 = dst.rowRange(0, npoints);
            src = src1;
            dst = dst1;
            if( method == RANSAC || method == LMEDS )
                cb->runKernel( src, dst, H );
            Mat H8(8, 1, CV_64F, H.ptr<double>());
            createLMSolver(makePtr<HomographyRefineCallback>(src, dst), 10)->run(H8);
        }
    }

    if( result )
    {
        if( _mask.needed() )
            tempMask.copyTo(_mask);
    }
    else
        H.release();

    return H;
}

cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
                           OutputArray _mask, int method, double ransacReprojThreshold )
{
    return cv::findHomography(_points1, _points2, method, ransacReprojThreshold, _mask);
}



/* Estimation of Fundamental Matrix from point correspondences.
   The original code has been written by Valery Mosyagin */

/* The algorithms (except for RANSAC) and the notation have been taken from
   Zhengyou Zhang's research report
   "Determining the Epipolar Geometry and its Uncertainty: A Review"
   that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */

/************************************** 7-point algorithm *******************************/
namespace cv
{

static int run7Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
    double a[7*9], w[7], u[9*9], v[9*9], c[4], r[3];
    double* f1, *f2;
    double t0, t1, t2;
    Mat A( 7, 9, CV_64F, a );
    Mat U( 7, 9, CV_64F, u );
    Mat Vt( 9, 9, CV_64F, v );
    Mat W( 7, 1, CV_64F, w );
    Mat coeffs( 1, 4, CV_64F, c );
    Mat roots( 1, 3, CV_64F, r );
    const Point2f* m1 = _m1.ptr<Point2f>();
    const Point2f* m2 = _m2.ptr<Point2f>();
    double* fmatrix = _fmatrix.ptr<double>();
    int i, k, n;

    // form a linear system: i-th row of A(=a) represents
    // the equation: (m2[i], 1)'*F*(m1[i], 1) = 0
    for( i = 0; i < 7; i++ )
    {
        double x0 = m1[i].x, y0 = m1[i].y;
        double x1 = m2[i].x, y1 = m2[i].y;

        a[i*9+0] = x1*x0;
        a[i*9+1] = x1*y0;
        a[i*9+2] = x1;
        a[i*9+3] = y1*x0;
        a[i*9+4] = y1*y0;
        a[i*9+5] = y1;
        a[i*9+6] = x0;
        a[i*9+7] = y0;
        a[i*9+8] = 1;
    }

    // A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so
    // the solution is linear subspace of dimensionality 2.
    // => use the last two singular vectors as a basis of the space
    // (according to SVD properties)
    SVDecomp( A, W, U, Vt, SVD::MODIFY_A + SVD::FULL_UV );
    f1 = v + 7*9;
    f2 = v + 8*9;

    // f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix.
    // as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1),
    // so f ~ lambda*f1 + (1 - lambda)*f2.
    // use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda.
    // it will be a cubic equation.
    // find c - polynomial coefficients.
    for( i = 0; i < 9; i++ )
        f1[i] -= f2[i];

    t0 = f2[4]*f2[8] - f2[5]*f2[7];
    t1 = f2[3]*f2[8] - f2[5]*f2[6];
    t2 = f2[3]*f2[7] - f2[4]*f2[6];

    c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;

    c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
    f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
    f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
    f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
    f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
    f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
    f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);

    t0 = f1[4]*f1[8] - f1[5]*f1[7];
    t1 = f1[3]*f1[8] - f1[5]*f1[6];
    t2 = f1[3]*f1[7] - f1[4]*f1[6];

    c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
    f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
    f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
    f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
    f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
    f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
    f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);

    c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;

    // solve the cubic equation; there can be 1 to 3 roots ...
    n = solveCubic( coeffs, roots );

    if( n < 1 || n > 3 )
        return n;

    for( k = 0; k < n; k++, fmatrix += 9 )
    {
        // for each root form the fundamental matrix
        double lambda = r[k], mu = 1.;
        double s = f1[8]*r[k] + f2[8];

        // normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1
        if( fabs(s) > DBL_EPSILON )
        {
            mu = 1./s;
            lambda *= mu;
            fmatrix[8] = 1.;
        }
        else
            fmatrix[8] = 0.;

        for( i = 0; i < 8; i++ )
            fmatrix[i] = f1[i]*lambda + f2[i]*mu;
    }

    return n;
}


static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
    double a[9*9], w[9], v[9*9];
    Mat W( 9, 1, CV_64F, w );
    Mat V( 9, 9, CV_64F, v );
    Mat A( 9, 9, CV_64F, a );
    Mat U, F0, TF;

    Point2d m1c(0,0), m2c(0,0);
    double t, scale1 = 0, scale2 = 0;

    const Point2f* m1 = _m1.ptr<Point2f>();
    const Point2f* m2 = _m2.ptr<Point2f>();
    double* fmatrix = _fmatrix.ptr<double>();
    CV_Assert( (_m1.cols == 1 || _m1.rows == 1) && _m1.size() == _m2.size());
    int i, j, k, count = _m1.checkVector(2);

    // compute centers and average distances for each of the two point sets
    for( i = 0; i < count; i++ )
    {
        double x = m1[i].x, y = m1[i].y;
        m1c.x += x; m1c.y += y;

        x = m2[i].x, y = m2[i].y;
        m2c.x += x; m2c.y += y;
    }

    // calculate the normalizing transformations for each of the point sets:
    // after the transformation each set will have the mass center at the coordinate origin
    // and the average distance from the origin will be ~sqrt(2).
    t = 1./count;
    m1c.x *= t; m1c.y *= t;
    m2c.x *= t; m2c.y *= t;

    for( i = 0; i < count; i++ )
    {
        double x = m1[i].x - m1c.x, y = m1[i].y - m1c.y;
        scale1 += std::sqrt(x*x + y*y);

        x = m2[i].x - m2c.x, y = m2[i].y - m2c.y;
        scale2 += std::sqrt(x*x + y*y);
    }

    scale1 *= t;
    scale2 *= t;

    if( scale1 < FLT_EPSILON || scale2 < FLT_EPSILON )
        return 0;

    scale1 = std::sqrt(2.)/scale1;
    scale2 = std::sqrt(2.)/scale2;

    A.setTo(Scalar::all(0));

    // form a linear system Ax=0: for each selected pair of points m1 & m2,
    // the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0
    // to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0.
    for( i = 0; i < count; i++ )
    {
        double x1 = (m1[i].x - m1c.x)*scale1;
        double y1 = (m1[i].y - m1c.y)*scale1;
        double x2 = (m2[i].x - m2c.x)*scale2;
        double y2 = (m2[i].y - m2c.y)*scale2;
        double r[9] = { x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1 };
        for( j = 0; j < 9; j++ )
            for( k = 0; k < 9; k++ )
                a[j*9+k] += r[j]*r[k];
    }

    eigen(A, W, V);

    for( i = 0; i < 9; i++ )
    {
        if( fabs(w[i]) < DBL_EPSILON )
            break;
    }

    if( i < 8 )
        return 0;

    F0 = Mat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0

    // make F0 singular (of rank 2) by decomposing it with SVD,
    // zeroing the last diagonal element of W and then composing the matrices back.

    // use v as a temporary storage for different 3x3 matrices
    W = U = V = TF = F0;
    W = Mat(3, 1, CV_64F, v);
    U = Mat(3, 3, CV_64F, v + 9);
    V = Mat(3, 3, CV_64F, v + 18);
    TF = Mat(3, 3, CV_64F, v + 27);

    SVDecomp( F0, W, U, V, SVD::MODIFY_A );
    W.at<double>(2) = 0.;

    // F0 <- U*diag([W(1), W(2), 0])*V'
    gemm( U, Mat::diag(W), 1., 0, 0., TF, 0 );
    gemm( TF, V, 1., 0, 0., F0, 0/*CV_GEMM_B_T*/ );

    // apply the transformation that is inverse
    // to what we used to normalize the point coordinates
    double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 };
    double tt2[] = { scale2, 0, -scale2*m2c.x, 0, scale2, -scale2*m2c.y, 0, 0, 1 };
    Mat T1(3, 3, CV_64F, tt1), T2(3, 3, CV_64F, tt2);

    // F0 <- T2'*F0*T1
    gemm( T2, F0, 1., 0, 0., TF, GEMM_1_T );
    F0 = Mat(3, 3, CV_64F, fmatrix);
    gemm( TF, T1, 1., 0, 0., F0, 0 );

    // make F(3,3) = 1
    if( fabs(F0.at<double>(2,2)) > FLT_EPSILON )
        F0 *= 1./F0.at<double>(2,2);

    return 1;
}


class FMEstimatorCallback : public PointSetRegistrator::Callback
{
public:
    bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
    {
        Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
        return !haveCollinearPoints(ms1, count) && !haveCollinearPoints(ms2, count);
    }

    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
    {
        double f[9*3];
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        int count = m1.checkVector(2);
        Mat F(count == 7 ? 9 : 3, 3, CV_64F, f);
        int n = count == 7 ? run7Point(m1, m2, F) : run8Point(m1, m2, F);

        if( n == 0 )
            _model.release();
        else
            F.rowRange(0, n*3).copyTo(_model);

        return n;
    }

    void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
    {
        Mat __m1 = _m1.getMat(), __m2 = _m2.getMat(), __model = _model.getMat();
        int i, count = __m1.checkVector(2);
        const Point2f* m1 = __m1.ptr<Point2f>();
        const Point2f* m2 = __m2.ptr<Point2f>();
        const double* F = __model.ptr<double>();
        _err.create(count, 1, CV_32F);
        float* err = _err.getMat().ptr<float>();

        for( i = 0; i < count; i++ )
        {
            double a, b, c, d1, d2, s1, s2;

            a = F[0]*m1[i].x + F[1]*m1[i].y + F[2];
            b = F[3]*m1[i].x + F[4]*m1[i].y + F[5];
            c = F[6]*m1[i].x + F[7]*m1[i].y + F[8];

            s2 = 1./(a*a + b*b);
            d2 = m2[i].x*a + m2[i].y*b + c;

            a = F[0]*m2[i].x + F[3]*m2[i].y + F[6];
            b = F[1]*m2[i].x + F[4]*m2[i].y + F[7];
            c = F[2]*m2[i].x + F[5]*m2[i].y + F[8];

            s1 = 1./(a*a + b*b);
            d1 = m1[i].x*a + m1[i].y*b + c;

            err[i] = (float)std::max(d1*d1*s1, d2*d2*s2);
        }
    }
};

}

cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
                                int method, double param1, double param2,
                                OutputArray _mask )
{
    Mat points1 = _points1.getMat(), points2 = _points2.getMat();
    Mat m1, m2, F;
    int npoints = -1;

    for( int i = 1; i <= 2; i++ )
    {
        Mat& p = i == 1 ? points1 : points2;
        Mat& m = i == 1 ? m1 : m2;
        npoints = p.checkVector(2, -1, false);
        if( npoints < 0 )
        {
            npoints = p.checkVector(3, -1, false);
            if( npoints < 0 )
                CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
            if( npoints == 0 )
                return Mat();
            convertPointsFromHomogeneous(p, p);
        }
        p.reshape(2, npoints).convertTo(m, CV_32F);
    }

    CV_Assert( m1.checkVector(2) == m2.checkVector(2) );

    if( npoints < 7 )
        return Mat();

    Ptr<PointSetRegistrator::Callback> cb = makePtr<FMEstimatorCallback>();
    int result;

    if( npoints == 7 || method == FM_8POINT )
    {
        result = cb->runKernel(m1, m2, F);
        if( _mask.needed() )
        {
            _mask.create(npoints, 1, CV_8U, -1, true);
            Mat mask = _mask.getMat();
            CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == npoints );
            mask.setTo(Scalar::all(1));
        }
    }
    else
    {
        if( param1 <= 0 )
            param1 = 3;
        if( param2 < DBL_EPSILON || param2 > 1 - DBL_EPSILON )
            param2 = 0.99;

        if( (method & ~3) == FM_RANSAC && npoints >= 15 )
            result = createRANSACPointSetRegistrator(cb, 7, param1, param2)->run(m1, m2, F, _mask);
        else
            result = createLMeDSPointSetRegistrator(cb, 7, param2)->run(m1, m2, F, _mask);
    }

    if( result <= 0 )
        return Mat();

    return F;
}

cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
                               OutputArray _mask, int method, double param1, double param2 )
{
    return cv::findFundamentalMat(_points1, _points2, method, param1, param2, _mask);
}


void cv::computeCorrespondEpilines( InputArray _points, int whichImage,
                                    InputArray _Fmat, OutputArray _lines )
{
    double f[9];
    Mat tempF(3, 3, CV_64F, f);
    Mat points = _points.getMat(), F = _Fmat.getMat();

    if( !points.isContinuous() )
        points = points.clone();

    int npoints = points.checkVector(2);
    if( npoints < 0 )
    {
        npoints = points.checkVector(3);
        if( npoints < 0 )
            CV_Error( Error::StsBadArg, "The input should be a 2D or 3D point set");
        Mat temp;
        convertPointsFromHomogeneous(points, temp);
        points = temp;
    }
    int depth = points.depth();
    CV_Assert( depth == CV_32F || depth == CV_32S || depth == CV_64F );

    CV_Assert(F.size() == Size(3,3));
    F.convertTo(tempF, CV_64F);
    if( whichImage == 2 )
        transpose(tempF, tempF);

    int ltype = CV_MAKETYPE(MAX(depth, CV_32F), 3);
    _lines.create(npoints, 1, ltype);
    Mat lines = _lines.getMat();
    if( !lines.isContinuous() )
    {
        _lines.release();
        _lines.create(npoints, 1, ltype);
        lines = _lines.getMat();
    }
    CV_Assert( lines.isContinuous());

    if( depth == CV_32S || depth == CV_32F )
    {
        const Point* ptsi = points.ptr<Point>();
        const Point2f* ptsf = points.ptr<Point2f>();
        Point3f* dstf = lines.ptr<Point3f>();
        for( int i = 0; i < npoints; i++ )
        {
            Point2f pt = depth == CV_32F ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
            double a = f[0]*pt.x + f[1]*pt.y + f[2];
            double b = f[3]*pt.x + f[4]*pt.y + f[5];
            double c = f[6]*pt.x + f[7]*pt.y + f[8];
            double nu = a*a + b*b;
            nu = nu ? 1./std::sqrt(nu) : 1.;
            a *= nu; b *= nu; c *= nu;
            dstf[i] = Point3f((float)a, (float)b, (float)c);
        }
    }
    else
    {
        const Point2d* ptsd = points.ptr<Point2d>();
        Point3d* dstd = lines.ptr<Point3d>();
        for( int i = 0; i < npoints; i++ )
        {
            Point2d pt = ptsd[i];
            double a = f[0]*pt.x + f[1]*pt.y + f[2];
            double b = f[3]*pt.x + f[4]*pt.y + f[5];
            double c = f[6]*pt.x + f[7]*pt.y + f[8];
            double nu = a*a + b*b;
            nu = nu ? 1./std::sqrt(nu) : 1.;
            a *= nu; b *= nu; c *= nu;
            dstd[i] = Point3d(a, b, c);
        }
    }
}

void cv::convertPointsFromHomogeneous( InputArray _src, OutputArray _dst )
{
    Mat src = _src.getMat();
    if( !src.isContinuous() )
        src = src.clone();
    int i, npoints = src.checkVector(3), depth = src.depth(), cn = 3;
    if( npoints < 0 )
    {
        npoints = src.checkVector(4);
        CV_Assert(npoints >= 0);
        cn = 4;
    }
    CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));

    int dtype = CV_MAKETYPE(depth <= CV_32F ? CV_32F : CV_64F, cn-1);
    _dst.create(npoints, 1, dtype);
    Mat dst = _dst.getMat();
    if( !dst.isContinuous() )
    {
        _dst.release();
        _dst.create(npoints, 1, dtype);
        dst = _dst.getMat();
    }
    CV_Assert( dst.isContinuous() );

    if( depth == CV_32S )
    {
        if( cn == 3 )
        {
            const Point3i* sptr = src.ptr<Point3i>();
            Point2f* dptr = dst.ptr<Point2f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i].z != 0 ? 1.f/sptr[i].z : 1.f;
                dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4i* sptr = src.ptr<Vec4i>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i][3] != 0 ? 1.f/sptr[i][3] : 1.f;
                dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else if( depth == CV_32F )
    {
        if( cn == 3 )
        {
            const Point3f* sptr = src.ptr<Point3f>();
            Point2f* dptr = dst.ptr<Point2f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i].z != 0.f ? 1.f/sptr[i].z : 1.f;
                dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4f* sptr = src.ptr<Vec4f>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i][3] != 0.f ? 1.f/sptr[i][3] : 1.f;
                dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else if( depth == CV_64F )
    {
        if( cn == 3 )
        {
            const Point3d* sptr = src.ptr<Point3d>();
            Point2d* dptr = dst.ptr<Point2d>();
            for( i = 0; i < npoints; i++ )
            {
                double scale = sptr[i].z != 0. ? 1./sptr[i].z : 1.;
                dptr[i] = Point2d(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4d* sptr = src.ptr<Vec4d>();
            Point3d* dptr = dst.ptr<Point3d>();
            for( i = 0; i < npoints; i++ )
            {
                double scale = sptr[i][3] != 0.f ? 1./sptr[i][3] : 1.;
                dptr[i] = Point3d(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else
        CV_Error(Error::StsUnsupportedFormat, "");
}


void cv::convertPointsToHomogeneous( InputArray _src, OutputArray _dst )
{
    Mat src = _src.getMat();
    if( !src.isContinuous() )
        src = src.clone();
    int i, npoints = src.checkVector(2), depth = src.depth(), cn = 2;
    if( npoints < 0 )
    {
        npoints = src.checkVector(3);
        CV_Assert(npoints >= 0);
        cn = 3;
    }
    CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));

    int dtype = CV_MAKETYPE(depth <= CV_32F ? CV_32F : CV_64F, cn+1);
    _dst.create(npoints, 1, dtype);
    Mat dst = _dst.getMat();
    if( !dst.isContinuous() )
    {
        _dst.release();
        _dst.create(npoints, 1, dtype);
        dst = _dst.getMat();
    }
    CV_Assert( dst.isContinuous() );

    if( depth == CV_32S )
    {
        if( cn == 2 )
        {
            const Point2i* sptr = src.ptr<Point2i>();
            Point3i* dptr = dst.ptr<Point3i>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3i(sptr[i].x, sptr[i].y, 1);
        }
        else
        {
            const Point3i* sptr = src.ptr<Point3i>();
            Vec4i* dptr = dst.ptr<Vec4i>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4i(sptr[i].x, sptr[i].y, sptr[i].z, 1);
        }
    }
    else if( depth == CV_32F )
    {
        if( cn == 2 )
        {
            const Point2f* sptr = src.ptr<Point2f>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3f(sptr[i].x, sptr[i].y, 1.f);
        }
        else
        {
            const Point3f* sptr = src.ptr<Point3f>();
            Vec4f* dptr = dst.ptr<Vec4f>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4f(sptr[i].x, sptr[i].y, sptr[i].z, 1.f);
        }
    }
    else if( depth == CV_64F )
    {
        if( cn == 2 )
        {
            const Point2d* sptr = src.ptr<Point2d>();
            Point3d* dptr = dst.ptr<Point3d>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3d(sptr[i].x, sptr[i].y, 1.);
        }
        else
        {
            const Point3d* sptr = src.ptr<Point3d>();
            Vec4d* dptr = dst.ptr<Vec4d>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4d(sptr[i].x, sptr[i].y, sptr[i].z, 1.);
        }
    }
    else
        CV_Error(Error::StsUnsupportedFormat, "");
}


void cv::convertPointsHomogeneous( InputArray _src, OutputArray _dst )
{
    int stype = _src.type(), dtype = _dst.type();
    CV_Assert( _dst.fixedType() );

    if( CV_MAT_CN(stype) > CV_MAT_CN(dtype) )
        convertPointsFromHomogeneous(_src, _dst);
    else
        convertPointsToHomogeneous(_src, _dst);
}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */